Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Optimal Topology for Ad-hoc Robot Networks (2201.12900v2)

Published 30 Jan 2022 in cs.RO and cs.LG

Abstract: In this paper, we synthesize a data-driven method to predict the optimal topology of an ad-hoc robot network. This problem is technically a multi-task classification problem. However, we divide it into a class of multi-class classification problems that can be more efficiently solved. For this purpose, we first compose an algorithm to create ground-truth optimal topologies associated with various configurations of a robot network. This algorithm incorporates a complex collection of optimality criteria that our learning model successfully manages to learn. This model is an stacked ensemble whose output is the topology prediction for a particular robot. Each stacked ensemble instance constitutes three low-level estimators whose outputs will be aggregated by a high-level boosting blender. Applying our model to a network of 10 robots displays over 80% accuracy in the prediction of optimal topologies corresponding to various configurations of the cited network.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. S. H. Alsamhi and B. Lee, “Blockchain-empowered multi-robot collaboration to fight covid-19 and future pandemics,” IEEE Access, vol. 9, pp. 44 173–44 197, 2020.
  2. A. Pennisi, F. Previtali, C. Gennari, D. D. Bloisi, L. Iocchi, F. Ficarola, A. Vitaletti, and D. Nardi, “Multi-robot surveillance through a distributed sensor network,” in Cooperative Robots and Sensor Networks 2015.   Springer, 2015, pp. 77–98.
  3. A. Bertrand and M. Moonen, “Seeing the bigger picture: How nodes can learn their place within a complex ad hoc network topology,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 71–82, 2013.
  4. D. S. Drew, “Multi-agent systems for search and rescue applications,” Current Robotics Reports, vol. 2, no. 2, pp. 189–200, 2021.
  5. G. Caiazza, “Application-level security for robotic networks,” 2021.
  6. M. Macktoobian and S. A. A. Moosavian, “Time-variant artificial potential fields: A new power-saving strategy for navigation of autonomous mobile robots,” in 2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM).   IEEE, 2013, pp. 121–127.
  7. M. A. Batalin, G. S. Sukhatme, and M. Hattig, “Mobile robot navigation using a sensor network,” in IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 1.   IEEE, 2004, pp. 636–641.
  8. L. Xiangpeng, H. Haibo, Y. Hao, and S. Dong, “A unified controller for the connectivity maintenance of a robotic router networks,” in International Conference on Intelligent Autonomous Systems.   Springer, 2016, pp. 1117–1128.
  9. M. Macktoobian and M. Aliyari Sh, “Optimal distributed interconnectivity of multi-robot systems by spatially-constrained clustering,” Adaptive Behavior, vol. 25, no. 2, pp. 96–113, 2017.
  10. X. Li and D. Sun, “Topology design for router networks to accomplish a cooperative exploring task,” in 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014).   IEEE, 2014, pp. 884–889.
  11. C. Mavrogiannis and R. A. Knepper, “Hamiltonian coordination primitives for decentralized multiagent navigation,” The International Journal of Robotics Research, vol. 40, no. 10-11, pp. 1234–1254, 2021.
  12. Y. Chen, X. Tang, X. Qi, C.-G. Li, and R. Xiao, “Learning graph normalization for graph neural networks,” Neurocomputing, vol. 493, pp. 613–625, 2022.
  13. P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superglue: Learning feature matching with graph neural networks,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 4938–4947.
  14. Z. Hu, Y. Dong, K. Wang, K.-W. Chang, and Y. Sun, “Gpt-gnn: Generative pre-training of graph neural networks,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 1857–1867.
  15. M. Tscherepanow, “Topoart: A topology learning hierarchical art network,” in International Conference on Artificial Neural Networks.   Springer, 2010, pp. 157–167.
  16. S. Furao and O. Hasegawa, “An incremental network for on-line unsupervised classification and topology learning,” Neural networks, vol. 19, no. 1, pp. 90–106, 2006.
  17. D. Marinakis, G. Dudek, and D. J. Fleet, “Learning sensor network topology through monte carlo expectation maximization,” in Proceedings of the 2005 IEEE International Conference on Robotics and Automation.   IEEE, 2005, pp. 4581–4587.
  18. L. Ghouti, T. R. Sheltami, and K. S. Alutaibi, “Mobility prediction in mobile ad hoc networks using extreme learning machines,” Procedia Computer Science, vol. 19, pp. 305–312, 2013.
  19. E. Testi and A. Giorgetti, “Blind wireless network topology inference,” IEEE Transactions on Communications, vol. 69, no. 2, pp. 1109–1120, 2020.
  20. M. Macktoobian, F. Basciani, D. Gillet, and J.-P. Kneib, “Data-driven convergence prediction of astrobots swarms,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 2, pp. 747–758, 2021.
  21. L. R. Huang, A. Zhu, K. Wang, D. I. Goldman, A. Ruina, and K. H. Petersen, “Construction and excavation by collaborative double-tailed saw robots,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3742–3748, 2022.
  22. J. Hu, P. Bhowmick, I. Jang, F. Arvin, and A. Lanzon, “A decentralized cluster formation containment framework for multirobot systems,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1936–1955, 2021.
  23. M. Macktoobian and G. F. Duc, “Meta navigation functions: Adaptive associations for coordination of multi-agent systems,” in 2022 American Control Conference (ACC).   IEEE, 2022, pp. 1921–1926.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com