Papers
Topics
Authors
Recent
2000 character limit reached

A Theoretical Comparison of Graph Neural Network Extensions

Published 30 Jan 2022 in cs.LG | (2201.12884v1)

Abstract: We study and compare different Graph Neural Network extensions that increase the expressive power of GNNs beyond the Weisfeiler-Leman test. We focus on (i) GNNs based on higher order WL methods, (ii) GNNs that preprocess small substructures in the graph, (iii) GNNs that preprocess the graph up to a small radius, and (iv) GNNs that slightly perturb the graph to compute an embedding. We begin by presenting a simple improvement for this last extension that strictly increases the expressive power of this GNN variant. Then, as our main result, we compare the expressiveness of these extensions to each other through a series of example constructions that can be distinguished by one of the extensions, but not by another one. We also show negative examples that are particularly challenging for each of the extensions, and we prove several claims about the ability of these extensions to count cliques and cycles in the graph.

Citations (44)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.