Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial Functors and Shannon Entropy (2201.12878v3)

Published 30 Jan 2022 in math.CT, cs.IT, and math.IT

Abstract: Past work shows that one can associate a notion of Shannon entropy to a Dirichlet polynomial, regarded as an empirical distribution. Indeed, entropy can be extracted from any d:Dir by a two-step process, where the first step is a rig homomorphism out of Dir, the set of Dirichlet polynomials, with rig structure given by standard addition and multiplication. In this short note, we show that this rig homomorphism can be upgraded to a rig functor, when we replace the set of Dirichlet polynomials by the category of ordinary (Cartesian) polynomials. In the Cartesian case, the process has three steps. The first step is a rig functor PolyCart -> Poly sending a polynomial p to (dp)y, where dp is the derivative of p. The second is a rig functor Poly -> Set x Setop, sending a polynomial q to the pair (q(1),Gamma(q)), where Gamma(q)=Poly(q,y) can be interpreted as the global sections of q viewed as a bundle, and q(1) as its base. To make this precise we define what appears to be a new distributive monoidal structure on Set x Setop, which can be understood geometrically in terms of rectangles. The last step, as for Dirichlet polynomials, is simply to extract the entropy as a real number from a pair of sets (A,B); it is given by log A - log B1/A and can be thought of as the log aspect ratio of the rectangle.

Citations (2)

Summary

We haven't generated a summary for this paper yet.