Two-Step Mixed-Type Multivariate Bayesian Sparse Variable Selection with Shrinkage Priors (2201.12839v8)
Abstract: We introduce a Bayesian framework for mixed-type multivariate regression using continuous shrinkage priors. Our framework enables joint analysis of mixed continuous and discrete outcomes and facilitates variable selection from the $p$ covariates. Theoretical studies of Bayesian mixed-type multivariate response models have not been conducted previously and require more intricate arguments than the corresponding theory for univariate response models due to the correlations between the responses. In this paper, we investigate necessary and sufficient conditions for posterior contraction of our method when $p$ grows faster than sample size $n$. The existing literature on Bayesian high-dimensional asymptotics has focused only on cases where $p$ grows subexponentially with $n$. In contrast, we study the asymptotic regime where $p$ is allowed to grow exponentially in terms of $n$. We develop a novel two-step approach for variable selection which possesses the sure screening property and provably achieves posterior contraction even under exponential growth of $p$. We demonstrate the utility of our method through simulation studies and applications to real data, including a cancer genomics dataset where $n=174$ and $p=9183$. The R code to implement our method is available at https://github.com/raybai07/MtMBSP.
- {barticle}[author] \bauthor\bsnmAn, \bfnmBaiguo\binitsB. and \bauthor\bsnmZhang, \bfnmBeibei\binitsB. (\byear2017). \btitleSimultaneous selection of predictors and responses for high dimensional multivariate linear regression. \bjournalStatistics & Probability Letters \bvolume127 \bpages173–177. \endbibitem
- {barticle}[author] \bauthor\bsnmArmagan, \bfnmArtin\binitsA., \bauthor\bsnmDunson, \bfnmDavid B\binitsD. B. and \bauthor\bsnmLee, \bfnmJaeyong\binitsJ. (\byear2013). \btitleGeneralized double Pareto shrinkage. \bjournalStatistica Sinica \bvolume23 \bpages119-143. \endbibitem
- {barticle}[author] \bauthor\bsnmBai, \bfnmRay\binitsR. and \bauthor\bsnmGhosh, \bfnmMalay\binitsM. (\byear2018). \btitleHigh-dimensional multivariate posterior consistency under global–local shrinkage priors. \bjournalJournal of Multivariate Analysis \bvolume167 \bpages157-170. \endbibitem
- {barticle}[author] \bauthor\bsnmBanerjee, \bfnmKalins\binitsK., \bauthor\bsnmChen, \bfnmJun\binitsJ. and \bauthor\bsnmZhan, \bfnmXiang\binitsX. (\byear2022). \btitleAdaptive and powerful microbiome multivariate association analysis via feature selection. \bjournalNAR Genomics and Bioinformatics \bvolume4 \bpageslqab120. \endbibitem
- {barticle}[author] \bauthor\bsnmBelitser, \bfnmEduard\binitsE., \bauthor\bsnmGhosal, \bfnmSubhashis\binitsS. and \bauthor\bparticlevan \bsnmZanten, \bfnmHarry\binitsH. (\byear2012). \btitleOptimal two-stage procedures for estimating location and size of the maximum of a multivariate regression function. \bjournalThe Annals of Statistics \bvolume40 \bpages2850–2876. \endbibitem
- {barticle}[author] \bauthor\bsnmBhattacharya, \bfnmAnirban\binitsA., \bauthor\bsnmChakraborty, \bfnmAntik\binitsA. and \bauthor\bsnmMallick, \bfnmBani K\binitsB. K. (\byear2016). \btitleFast sampling with Gaussian scale mixture priors in high-dimensional regression. \bjournalBiometrika \bvolume103 \bpages985–991. \endbibitem
- {barticle}[author] \bauthor\bsnmBhattacharya, \bfnmSuman\binitsS., \bauthor\bsnmKhare, \bfnmKshitij\binitsK. and \bauthor\bsnmPal, \bfnmSubhadip\binitsS. (\byear2022). \btitleGeometric ergodicity of Gibbs samplers for the horseshoe and its regularized variants. \bjournalElectronic Journal of Statistics \bvolume16 \bpages1 – 57. \endbibitem
- {barticle}[author] \bauthor\bsnmBradley, \bfnmJonathan R.\binitsJ. R. (\byear2022). \btitleJoint Bayesian analysis of multiple response-types using the hierarchical generalized transformation model. \bjournalBayesian Analysis \bvolume17 \bpages127 – 164. \endbibitem
- {barticle}[author] \bauthor\bsnmCamastra, \bfnmFrancesco\binitsF. and \bauthor\bsnmVerri, \bfnmAlessandro\binitsA. (\byear2005). \btitleA novel kernel method for clustering. \bjournalIEEE Transactions on Pattern Analysis and Machine Intelligence \bvolume27 \bpages801–805. \endbibitem
- {barticle}[author] \bauthor\bsnmCao, \bfnmXuan\binitsX., \bauthor\bsnmKhare, \bfnmKshitij\binitsK. and \bauthor\bsnmGhosh, \bfnmMalay\binitsM. (\byear2020). \btitleHigh-dimensional posterior consistency for hierarchical non-local priors in regression. \bjournalBayesian Analysis \bvolume15 \bpages241 – 262. \endbibitem
- {barticle}[author] \bauthor\bsnmCarvalho, \bfnmCarlos M.\binitsC. M., \bauthor\bsnmPolson, \bfnmNicholas G.\binitsN. G. and \bauthor\bsnmScott, \bfnmJames G.\binitsJ. G. (\byear2010). \btitleThe horseshoe estimator for sparse signals. \bjournalBiometrika \bvolume97 \bpages465-480. \endbibitem
- {barticle}[author] \bauthor\bsnmChakraborty, \bfnmAntik\binitsA., \bauthor\bsnmBhattacharya, \bfnmAnirban\binitsA. and \bauthor\bsnmMallick, \bfnmBani K\binitsB. K. (\byear2020). \btitleBayesian sparse multiple regression for simultaneous rank reduction and variable selection. \bjournalBiometrika \bvolume107 \bpages205–221. \endbibitem
- {barticle}[author] \bauthor\bsnmChakraborty, \bfnmMoumita\binitsM. and \bauthor\bsnmGhosal, \bfnmSubhashis\binitsS. (\byear2021). \btitleBayesian inference on monotone regression quantile: coverage and rate acceleration. \bjournalpreprint. \endbibitem
- {barticle}[author] \bauthor\bsnmChen, \bfnmJun\binitsJ. and \bauthor\bsnmLi, \bfnmHongzhe\binitsH. (\byear2013). \btitleVariable selection for sparse Dirichlet-multinomial regression with an application to microbiome data analysis. \bjournalThe Annals of Applied Statistics \bvolume7 \bpages418-442. \endbibitem
- {barticle}[author] \bauthor\bsnmChoi, \bfnmHee Min\binitsH. M. and \bauthor\bsnmHobert, \bfnmJames P.\binitsJ. P. (\byear2013). \btitleThe Polya-Gamma Gibbs sampler for Bayesian logistic regression is uniformly ergodic. \bjournalElectronic Journal of Statistics \bvolume7 \bpages2054 – 2064. \endbibitem
- {barticle}[author] \bauthor\bsnmCox, \bfnmD. R.\binitsD. R. and \bauthor\bsnmWermuth, \bfnmNanny\binitsN. (\byear1992). \btitleResponse models for mixed binary and quantitative variables. \bjournalBiometrika \bvolume79 \bpages441–461. \endbibitem
- {barticle}[author] \bauthor\bsnmDadaneh, \bfnmSiamak Zamani\binitsS. Z., \bauthor\bsnmZhou, \bfnmMingyuan\binitsM. and \bauthor\bsnmQian, \bfnmXiaoning\binitsX. (\byear2018). \btitleBayesian negative binomial regression for differential expression with confounding factors. \bjournalBioinformatics \bvolume34 \bpages3349–3356. \endbibitem
- {barticle}[author] \bauthor\bsnmDeng, \bfnmXinwei\binitsX. and \bauthor\bsnmJin, \bfnmRan\binitsR. (\byear2015). \btitleQQ Mmdels: Joint modeling for quantitative and qualitative quality responses in manufacturing systems. \bjournalTechnometrics \bvolume57 \bpages320-331. \endbibitem
- {barticle}[author] \bauthor\bsnmDeshpande, \bfnmSameer K\binitsS. K., \bauthor\bsnmRočková, \bfnmVeronika\binitsV. and \bauthor\bsnmGeorge, \bfnmEdward I\binitsE. I. (\byear2019). \btitleSimultaneous variable and covariance selection with the multivariate spike-and-slab lasso. \bjournalJournal of Computational and Graphical Statistics \bvolume28 \bpages921–931. \endbibitem
- {barticle}[author] \bauthor\bsnmDunson, \bfnmDavid B.\binitsD. B. (\byear2000). \btitleBayesian latent variable models for clustered mixed outcomes. \bjournalJournal of the Royal Statistical Society. Series B (Statistical Methodology) \bvolume62 \bpages355–366. \endbibitem
- {barticle}[author] \bauthor\bsnmFan, \bfnmJianqing\binitsJ. and \bauthor\bsnmLv, \bfnmJinchi\binitsJ. (\byear2008). \btitleSure independence screening for ultrahigh dimensional feature space. \bjournalJournal of the Royal Statistical Society: Series B (Statistical Methodology) \bvolume70 \bpages849–911. \endbibitem
- {barticle}[author] \bauthor\bsnmFan, \bfnmJianqing\binitsJ. and \bauthor\bsnmZhang, \bfnmWenyang\binitsW. (\byear1999). \btitleStatistical estimation in varying coefficient models. \bjournalThe Annals of Statistics \bvolume27 \bpages1491 – 1518. \endbibitem
- {barticle}[author] \bauthor\bsnmFitzmaurice, \bfnmGarrett M.\binitsG. M. and \bauthor\bsnmLaird, \bfnmNan M.\binitsN. M. (\byear1995). \btitleRegression models for a bivariate discrete and continuous outcome with clustering. \bjournalJournal of the American Statistical Association \bvolume90 \bpages845–852. \endbibitem
- {barticle}[author] \bauthor\bsnmGelman, \bfnmAndrew\binitsA., \bauthor\bsnmHwang, \bfnmJessica\binitsJ. and \bauthor\bsnmVehtari, \bfnmAki\binitsA. (\byear2014). \btitleUnderstanding predictive information criteria for Bayesian models. \bjournalStatistics and Computing \bvolume24 \bpages997–1016. \endbibitem
- {barticle}[author] \bauthor\bsnmGhosh, \bfnmMalay\binitsM. (\byear2021). \btitleExponential tail bounds for chisquared random variables. \bjournalJournal of Statistical Theory and Practice \bvolume15 \bpages1-6. \endbibitem
- {barticle}[author] \bauthor\bsnmGhosh, \bfnmSatyajit\binitsS., \bauthor\bsnmKhare, \bfnmKshitij\binitsK. and \bauthor\bsnmMichailidis, \bfnmGeorge\binitsG. (\byear2019). \btitleHigh-dimensional posterior consistency in Bayesian vector autoregressive models. \bjournalJournal of the American Statistical Association \bvolume114 \bpages735-748. \endbibitem
- {barticle}[author] \bauthor\bsnmGriffin, \bfnmJim E.\binitsJ. E. and \bauthor\bsnmBrown, \bfnmPhilip. J.\binitsP. J. (\byear2013). \btitleSome priors for sparse regression modelling. \bjournalBayesian Analysis \bvolume8 \bpages691–702. \endbibitem
- {barticle}[author] \bauthor\bsnmGriffin, \bfnmJ E\binitsJ. E., \bauthor\bsnmŁatuszyński, \bfnmK G\binitsK. G. and \bauthor\bsnmSteel, \bfnmM F J\binitsM. F. J. (\byear2020). \btitleIn search of lost mixing time: adaptive Markov chain Monte Carlo schemes for Bayesian variable selection with very large p. \bjournalBiometrika \bvolume108 \bpages53-69. \endbibitem
- {barticle}[author] \bauthor\bsnmHarrison, \bfnmCharles W\binitsC. W., \bauthor\bsnmHe, \bfnmQing\binitsQ. and \bauthor\bsnmHuang, \bfnmHsin-Hsiung\binitsH.-H. (\byear2022). \btitleClustering gene expressions using the table invitation prior. \bjournalGenes \bvolume13 \bpages2036. \endbibitem
- {barticle}[author] \bauthor\bsnmHe, \bfnmKevin\binitsK., \bauthor\bsnmXu, \bfnmHan\binitsH. and \bauthor\bsnmKang, \bfnmJian\binitsJ. (\byear2019). \btitleA selective overview of feature screening methods with applications to neuroimaging data. \bjournalWIREs Computational Statistics \bvolume11 \bpagese1454. \endbibitem
- {barticle}[author] \bauthor\bsnmHwang, \bfnmBeom Seuk\binitsB. S. and \bauthor\bsnmPennell, \bfnmMichael L.\binitsM. L. (\byear2014). \btitleSemiparametric Bayesian joint modeling of a binary and continuous outcome with applications in toxicological risk assessment. \bjournalStatistics in Medicine \bvolume33 \bpages1162-1175. \endbibitem
- {bbook}[author] \bauthor\bsnmJackman, \bfnmSimon\binitsS. (\byear2009). \btitleBayesian Analysis for the Social Sciences. \bpublisherJohn Wiley & Sons. \endbibitem
- {barticle}[author] \bauthor\bsnmKhare, \bfnmKshitij\binitsK. and \bauthor\bsnmSu, \bfnmZhihua\binitsZ. (\byear2023). \btitleResponse variable selection in multivariate linear regression. \bjournalStatistica Sinica (to appear). \endbibitem
- {barticle}[author] \bauthor\bsnmKoner, \bfnmSalil\binitsS. and \bauthor\bsnmWilliams, \bfnmJonathan P.\binitsJ. P. (\byear2023). \btitleThe EAS approach to variable selection for multivariate response data in high-dimensional settings. \bjournalElectronic Journal of Statistics \bvolume17 \bpages1947 – 1995. \endbibitem
- {barticle}[author] \bauthor\bsnmKuchibhotla, \bfnmArun K.\binitsA. K., \bauthor\bsnmKolassa, \bfnmJohn E.\binitsJ. E. and \bauthor\bsnmKuffner, \bfnmTodd A.\binitsT. A. (\byear2022). \btitlePost-Selection Inference. \bjournalAnnual Review of Statistics and Its Application \bvolume9 \bpages505-527. \endbibitem
- {barticle}[author] \bauthor\bsnmKundu, \bfnmDebamita\binitsD., \bauthor\bsnmMitra, \bfnmRiten\binitsR. and \bauthor\bsnmGaskins, \bfnmJeremy T.\binitsJ. T. (\byear2021). \btitleBayesian variable selection for multioutcome models through shared shrinkage. \bjournalScandinavian Journal of Statistics \bvolume48 \bpages295-320. \endbibitem
- {barticle}[author] \bauthor\bsnmLahiri, \bfnmSoumendra N.\binitsS. N. (\byear2021). \btitleNecessary and sufficient conditions for variable selection consistency of the LASSO in high dimensions. \bjournalThe Annals of Statistics \bvolume49 \bpages820 – 844. \endbibitem
- {barticle}[author] \bauthor\bsnmLi, \bfnmDongjin\binitsD., \bauthor\bsnmDutta, \bfnmSomak\binitsS. and \bauthor\bsnmRoy, \bfnmVivekananda\binitsV. (\byear2023). \btitleModel based screening embedded Bayesian variable selection for ultra-high dimensional settings. \bjournalJournal of Computational and Graphical Statistics \bvolume32 \bpages61-73. \endbibitem
- {barticle}[author] \bauthor\bsnmMatthews, \bfnmB. W.\binitsB. W. (\byear1975). \btitleComparison of the predicted and observed secondary structure of T4 phage lysozyme. \bjournalBiochimica et Biophysica Acta (BBA) - Protein Structure \bvolume405 \bpages442-451. \endbibitem
- {barticle}[author] \bauthor\bsnmMcCulloch, \bfnmCharles\binitsC. (\byear2008). \btitleJoint modelling of mixed outcome types using latent variables. \bjournalStatistical Methods in Medical Research \bvolume17 \bpages53-73. \endbibitem
- {barticle}[author] \bauthor\bsnmNarisetty, \bfnmNaveen Naidu\binitsN. N. and \bauthor\bsnmHe, \bfnmXuming\binitsX. (\byear2014). \btitleBayesian variable selection with shrinking and diffusing priors. \bjournalThe Annals of Statistics \bvolume42 \bpages789–817. \endbibitem
- {barticle}[author] \bauthor\bsnmNeal, \bfnmRadford M\binitsR. M. (\byear2011). \btitleMCMC using Hamiltonian dynamics. \bjournalHandbook of Markov Chain Monte Carlo \bvolume2 \bpages113-162. \endbibitem
- {barticle}[author] \bauthor\bsnmNing, \bfnmBo\binitsB., \bauthor\bsnmJeong, \bfnmSeonghyun\binitsS. and \bauthor\bsnmGhosal, \bfnmSubhashis\binitsS. (\byear2020). \btitleBayesian linear regression for multivariate responses under group sparsity. \bjournalBernoulli \bvolume26 \bpages2353–2382. \endbibitem
- {barticle}[author] \bauthor\bsnmPal, \bfnmSubhadip\binitsS. and \bauthor\bsnmKhare, \bfnmKshitij\binitsK. (\byear2014). \btitleGeometric ergodicity for Bayesian shrinkage models. \bjournalElectronic Journal of Statistics \bvolume8 \bpages604 – 645. \endbibitem
- {barticle}[author] \bauthor\bsnmPal, \bfnmSubahdip\binitsS., \bauthor\bsnmKhare, \bfnmKshitij\binitsK. and \bauthor\bsnmHobert, \bfnmJames P.\binitsJ. P. (\byear2017). \btitleTrace class Markov chains for Bayesian inference with generalized double Pareto shrinkage priors. \bjournalScandinavian Journal of Statistics \bvolume44 \bpages307-323. \endbibitem
- {barticle}[author] \bauthor\bsnmPitman, \bfnmJim\binitsJ. (\byear1995). \btitleExchangeable and partially exchangeable random partitions. \bjournalProbability Theory and Related Fields \bvolume102 \bpages145–158. \endbibitem
- {barticle}[author] \bauthor\bsnmPolson, \bfnmNicholas G\binitsN. G., \bauthor\bsnmScott, \bfnmJames G\binitsJ. G. and \bauthor\bsnmWindle, \bfnmJesse\binitsJ. (\byear2013). \btitleBayesian inference for logistic models using Pólya–Gamma latent variables. \bjournalJournal of the American Statistical Association \bvolume108 \bpages1339–1349. \endbibitem
- {barticle}[author] \bauthor\bsnmRegan, \bfnmMeredith M.\binitsM. M. and \bauthor\bsnmCatalano, \bfnmPaul J.\binitsP. J. (\byear1999). \btitleLikelihood models for clustered binary and continuous outcomes: Application to developmental toxicology. \bjournalBiometrics \bvolume55 \bpages760-768. \endbibitem
- {barticle}[author] \bauthor\bsnmRoberts, \bfnmGareth O.\binitsG. O. and \bauthor\bsnmRosenthal, \bfnmJeffrey S.\binitsJ. S. (\byear1998). \btitleMarkov-chain Monte Carlo: Some practical implications of theoretical results. \bjournalThe Canadian Journal of Statistics \bvolume26 \bpages5–20. \endbibitem
- {barticle}[author] \bauthor\bsnmRočková, \bfnmVeronika\binitsV. (\byear2018). \btitleBayesian estimation of sparse signals with a continuous spike-and-slab prior. \bjournalThe Annals of Statistics \bvolume46 \bpages401 – 437. \endbibitem
- {barticle}[author] \bauthor\bsnmRue, \bfnmHåvard\binitsH., \bauthor\bsnmMartino, \bfnmSara\binitsS. and \bauthor\bsnmChopin, \bfnmNicolas\binitsN. (\byear2009). \btitleApproximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. \bjournalJournal of the Royal Statistical Society: Series B (Statistical Methodology) \bvolume71 \bpages319-392. \endbibitem
- {barticle}[author] \bauthor\bsnmSchwarz, \bfnmGideon\binitsG. (\byear1978). \btitleEstimating the dimension of a model. \bjournalThe Annals of Statistics \bvolume6 \bpages461–464. \endbibitem
- {barticle}[author] \bauthor\bsnmShin, \bfnmMinsuk\binitsM., \bauthor\bsnmBhattacharya, \bfnmAnirban\binitsA. and \bauthor\bsnmJohnson, \bfnmValen E.\binitsV. E. (\byear2018). \btitleScalable Bayesian variable selection using nonlocal prior densities in ultrahigh-dimensional settings. \bjournalStatistica Sinica \bvolume28 \bpages1053–1078. \endbibitem
- {barticle}[author] \bauthor\bsnmSong, \bfnmQifan\binitsQ. and \bauthor\bsnmLiang, \bfnmFaming\binitsF. (\byear2023). \btitleNearly optimal Bayesian shrinkage for high-dimensional regression. \bjournalScience China Mathematics \bvolume66 \bpages409–442. \endbibitem
- {barticle}[author] \bauthor\bsnmSparks, \bfnmDouglas K.\binitsD. K., \bauthor\bsnmKhare, \bfnmKshitij\binitsK. and \bauthor\bsnmGhosh, \bfnmMalay\binitsM. (\byear2015). \btitleNecessary and sufficient conditions for high-dimensional posterior consistency under g𝑔gitalic_g-priors. \bjournalBayesian Analysis \bvolume10 \bpages627 – 664. \endbibitem
- {barticle}[author] \bauthor\bsnmStamey, \bfnmJames D.\binitsJ. D., \bauthor\bsnmNatanegara, \bfnmFanni\binitsF. and \bauthor\bsnmJr., \bfnmJohn W. Seaman\binitsJ. W. S. (\byear2013). \btitleBayesian sample size determination for a clinical trial with correlated continuous and binary outcomes. \bjournalJournal of Biopharmaceutical Statistics \bvolume23 \bpages790-803. \endbibitem
- {barticle}[author] \bauthor\bsnmTang, \bfnmRunlong\binitsR., \bauthor\bsnmBanerjee, \bfnmMoulinath\binitsM. and \bauthor\bsnmMichailidis, \bfnmGeorge\binitsG. (\byear2011). \btitleA two-stage hybrid procedure for estimating an inverse regression function. \bjournalThe Annals of Statistics \bvolume39 \bpages956 – 989. \endbibitem
- {barticle}[author] \bauthor\bsnmTibshirani, \bfnmR.\binitsR. (\byear1996). \btitleRegression shrinkage and selection via the lasso. \bjournalJournal of the Royal Statistical Society: Series B (Statistical Methodology) \bvolume58 \bpages267–288. \endbibitem
- {barticle}[author] \bauthor\bparticlevan der \bsnmPas, \bfnmS. L.\binitsS. L., \bauthor\bsnmKleijn, \bfnmB. J. K.\binitsB. J. K. and \bauthor\bparticlevan der \bsnmVaart, \bfnmA. W.\binitsA. W. (\byear2014). \btitleThe horseshoe estimator: Posterior concentration around nearly black vectors. \bjournalElectronic Journal of Statistics \bvolume8 \bpages2585 – 2618. \endbibitem
- {barticle}[author] \bauthor\bsnmWagner, \bfnmHelga\binitsH. and \bauthor\bsnmTüchler, \bfnmRegina\binitsR. (\byear2010). \btitleBayesian estimation of random effects models for multivariate responses of mixed data. \bjournalComputational Statistics & Data Analysis \bvolume54 \bpages1206-1218. \endbibitem
- {barticle}[author] \bauthor\bsnmWang, \bfnmShao-Hsuan\binitsS.-H., \bauthor\bsnmBai, \bfnmRay\binitsR. and \bauthor\bsnmHuang, \bfnmHsin-Hsiung\binitsH.-H. (\byear2022). \btitleCorrigendum to “High-dimensional multivariate posterior consistency under global-local shrinkage priors” [J. Multivariate Anal. 167 (2018) 157-170]. \bjournalTechnical report. \endbibitem
- {barticle}[author] \bauthor\bsnmWang, \bfnmXin\binitsX. and \bauthor\bsnmRoy, \bfnmVivekananda\binitsV. (\byear2018). \btitleGeometric ergodicity of Pólya-Gamma Gibbs sampler for Bayesian logistic regression with a flat prior. \bjournalElectronic Journal of Statistics \bvolume12 \bpages3295 – 3311. \endbibitem
- {barticle}[author] \bauthor\bsnmWatanabe, \bfnmSumio\binitsS. (\byear2010). \btitleAsymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. \bjournalJournal of Machine Learning Research \bvolume11 \bpages3571–3594. \endbibitem
- {barticle}[author] \bauthor\bsnmYang, \bfnmYun\binitsY., \bauthor\bsnmWainwright, \bfnmMartin J.\binitsM. J. and \bauthor\bsnmJordan, \bfnmMichael I.\binitsM. I. (\byear2016). \btitleOn the computational complexity of high-dimensional Bayesian variable selection. \bjournalThe Annals of Statistics \bvolume44 \bpages2497 – 2532. \endbibitem
- {barticle}[author] \bauthor\bsnmYoo, \bfnmWilliam Weimin\binitsW. W. and \bauthor\bsnmGhosal, \bfnmSubhashis\binitsS. (\byear2019). \btitleBayesian mode and maximum estimation and accelerated rates of contraction. \bjournalBernoulli \bvolume25 \bpages2330 – 2358. \endbibitem
- {barticle}[author] \bauthor\bsnmZhang, \bfnmRuoyang\binitsR. and \bauthor\bsnmGhosh, \bfnmMalay\binitsM. (\byear2022). \btitleUltra high-dimensional multivariate posterior contraction rate under shrinkage priors. \bjournalJournal of Multivariate Analysis \bvolume187 \bpages104835. \endbibitem
- {barticle}[author] \bauthor\bsnmZhou, \bfnmHua\binitsH. and \bauthor\bsnmLi, \bfnmLexin\binitsL. (\byear2014). \btitleRegularized matrix regression. \bjournalJournal of the Royal Statistical Society: Series B (Statistical Methodology) \bvolume76 \bpages463–483. \endbibitem
- {barticle}[author] \bauthor\bsnmZhou, \bfnmMingyuan\binitsM. and \bauthor\bsnmCarin, \bfnmLawrence\binitsL. (\byear2013). \btitleNegative binomial process count and mixture modeling. \bjournalIEEE Transactions on Pattern Analysis and Machine Intelligence \bvolume37 \bpages307–320. \endbibitem
- {barticle}[author] \bauthor\bsnmZhu, \bfnmShenghuo\binitsS. (\byear2012). \btitleA short note on the tail bound of Wishart distribution. \bjournalarXiv:1212.5860. \endbibitem
- {barticle}[author] \bauthor\bsnmZou, \bfnmHui\binitsH. (\byear2006). \btitleThe adaptive lasso and its oracle properties. \bjournalJournal of the American Statistical Association \bvolume101 \bpages1418–1429. \endbibitem