Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-Step Mixed-Type Multivariate Bayesian Sparse Variable Selection with Shrinkage Priors (2201.12839v8)

Published 30 Jan 2022 in math.ST and stat.TH

Abstract: We introduce a Bayesian framework for mixed-type multivariate regression using continuous shrinkage priors. Our framework enables joint analysis of mixed continuous and discrete outcomes and facilitates variable selection from the $p$ covariates. Theoretical studies of Bayesian mixed-type multivariate response models have not been conducted previously and require more intricate arguments than the corresponding theory for univariate response models due to the correlations between the responses. In this paper, we investigate necessary and sufficient conditions for posterior contraction of our method when $p$ grows faster than sample size $n$. The existing literature on Bayesian high-dimensional asymptotics has focused only on cases where $p$ grows subexponentially with $n$. In contrast, we study the asymptotic regime where $p$ is allowed to grow exponentially in terms of $n$. We develop a novel two-step approach for variable selection which possesses the sure screening property and provably achieves posterior contraction even under exponential growth of $p$. We demonstrate the utility of our method through simulation studies and applications to real data, including a cancer genomics dataset where $n=174$ and $p=9183$. The R code to implement our method is available at https://github.com/raybai07/MtMBSP.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (70)
  1. {barticle}[author] \bauthor\bsnmAn, \bfnmBaiguo\binitsB. and \bauthor\bsnmZhang, \bfnmBeibei\binitsB. (\byear2017). \btitleSimultaneous selection of predictors and responses for high dimensional multivariate linear regression. \bjournalStatistics & Probability Letters \bvolume127 \bpages173–177. \endbibitem
  2. {barticle}[author] \bauthor\bsnmArmagan, \bfnmArtin\binitsA., \bauthor\bsnmDunson, \bfnmDavid B\binitsD. B. and \bauthor\bsnmLee, \bfnmJaeyong\binitsJ. (\byear2013). \btitleGeneralized double Pareto shrinkage. \bjournalStatistica Sinica \bvolume23 \bpages119-143. \endbibitem
  3. {barticle}[author] \bauthor\bsnmBai, \bfnmRay\binitsR. and \bauthor\bsnmGhosh, \bfnmMalay\binitsM. (\byear2018). \btitleHigh-dimensional multivariate posterior consistency under global–local shrinkage priors. \bjournalJournal of Multivariate Analysis \bvolume167 \bpages157-170. \endbibitem
  4. {barticle}[author] \bauthor\bsnmBanerjee, \bfnmKalins\binitsK., \bauthor\bsnmChen, \bfnmJun\binitsJ. and \bauthor\bsnmZhan, \bfnmXiang\binitsX. (\byear2022). \btitleAdaptive and powerful microbiome multivariate association analysis via feature selection. \bjournalNAR Genomics and Bioinformatics \bvolume4 \bpageslqab120. \endbibitem
  5. {barticle}[author] \bauthor\bsnmBelitser, \bfnmEduard\binitsE., \bauthor\bsnmGhosal, \bfnmSubhashis\binitsS. and \bauthor\bparticlevan \bsnmZanten, \bfnmHarry\binitsH. (\byear2012). \btitleOptimal two-stage procedures for estimating location and size of the maximum of a multivariate regression function. \bjournalThe Annals of Statistics \bvolume40 \bpages2850–2876. \endbibitem
  6. {barticle}[author] \bauthor\bsnmBhattacharya, \bfnmAnirban\binitsA., \bauthor\bsnmChakraborty, \bfnmAntik\binitsA. and \bauthor\bsnmMallick, \bfnmBani K\binitsB. K. (\byear2016). \btitleFast sampling with Gaussian scale mixture priors in high-dimensional regression. \bjournalBiometrika \bvolume103 \bpages985–991. \endbibitem
  7. {barticle}[author] \bauthor\bsnmBhattacharya, \bfnmSuman\binitsS., \bauthor\bsnmKhare, \bfnmKshitij\binitsK. and \bauthor\bsnmPal, \bfnmSubhadip\binitsS. (\byear2022). \btitleGeometric ergodicity of Gibbs samplers for the horseshoe and its regularized variants. \bjournalElectronic Journal of Statistics \bvolume16 \bpages1 – 57. \endbibitem
  8. {barticle}[author] \bauthor\bsnmBradley, \bfnmJonathan R.\binitsJ. R. (\byear2022). \btitleJoint Bayesian analysis of multiple response-types using the hierarchical generalized transformation model. \bjournalBayesian Analysis \bvolume17 \bpages127 – 164. \endbibitem
  9. {barticle}[author] \bauthor\bsnmCamastra, \bfnmFrancesco\binitsF. and \bauthor\bsnmVerri, \bfnmAlessandro\binitsA. (\byear2005). \btitleA novel kernel method for clustering. \bjournalIEEE Transactions on Pattern Analysis and Machine Intelligence \bvolume27 \bpages801–805. \endbibitem
  10. {barticle}[author] \bauthor\bsnmCao, \bfnmXuan\binitsX., \bauthor\bsnmKhare, \bfnmKshitij\binitsK. and \bauthor\bsnmGhosh, \bfnmMalay\binitsM. (\byear2020). \btitleHigh-dimensional posterior consistency for hierarchical non-local priors in regression. \bjournalBayesian Analysis \bvolume15 \bpages241 – 262. \endbibitem
  11. {barticle}[author] \bauthor\bsnmCarvalho, \bfnmCarlos M.\binitsC. M., \bauthor\bsnmPolson, \bfnmNicholas G.\binitsN. G. and \bauthor\bsnmScott, \bfnmJames G.\binitsJ. G. (\byear2010). \btitleThe horseshoe estimator for sparse signals. \bjournalBiometrika \bvolume97 \bpages465-480. \endbibitem
  12. {barticle}[author] \bauthor\bsnmChakraborty, \bfnmAntik\binitsA., \bauthor\bsnmBhattacharya, \bfnmAnirban\binitsA. and \bauthor\bsnmMallick, \bfnmBani K\binitsB. K. (\byear2020). \btitleBayesian sparse multiple regression for simultaneous rank reduction and variable selection. \bjournalBiometrika \bvolume107 \bpages205–221. \endbibitem
  13. {barticle}[author] \bauthor\bsnmChakraborty, \bfnmMoumita\binitsM. and \bauthor\bsnmGhosal, \bfnmSubhashis\binitsS. (\byear2021). \btitleBayesian inference on monotone regression quantile: coverage and rate acceleration. \bjournalpreprint. \endbibitem
  14. {barticle}[author] \bauthor\bsnmChen, \bfnmJun\binitsJ. and \bauthor\bsnmLi, \bfnmHongzhe\binitsH. (\byear2013). \btitleVariable selection for sparse Dirichlet-multinomial regression with an application to microbiome data analysis. \bjournalThe Annals of Applied Statistics \bvolume7 \bpages418-442. \endbibitem
  15. {barticle}[author] \bauthor\bsnmChoi, \bfnmHee Min\binitsH. M. and \bauthor\bsnmHobert, \bfnmJames P.\binitsJ. P. (\byear2013). \btitleThe Polya-Gamma Gibbs sampler for Bayesian logistic regression is uniformly ergodic. \bjournalElectronic Journal of Statistics \bvolume7 \bpages2054 – 2064. \endbibitem
  16. {barticle}[author] \bauthor\bsnmCox, \bfnmD. R.\binitsD. R. and \bauthor\bsnmWermuth, \bfnmNanny\binitsN. (\byear1992). \btitleResponse models for mixed binary and quantitative variables. \bjournalBiometrika \bvolume79 \bpages441–461. \endbibitem
  17. {barticle}[author] \bauthor\bsnmDadaneh, \bfnmSiamak Zamani\binitsS. Z., \bauthor\bsnmZhou, \bfnmMingyuan\binitsM. and \bauthor\bsnmQian, \bfnmXiaoning\binitsX. (\byear2018). \btitleBayesian negative binomial regression for differential expression with confounding factors. \bjournalBioinformatics \bvolume34 \bpages3349–3356. \endbibitem
  18. {barticle}[author] \bauthor\bsnmDeng, \bfnmXinwei\binitsX. and \bauthor\bsnmJin, \bfnmRan\binitsR. (\byear2015). \btitleQQ Mmdels: Joint modeling for quantitative and qualitative quality responses in manufacturing systems. \bjournalTechnometrics \bvolume57 \bpages320-331. \endbibitem
  19. {barticle}[author] \bauthor\bsnmDeshpande, \bfnmSameer K\binitsS. K., \bauthor\bsnmRočková, \bfnmVeronika\binitsV. and \bauthor\bsnmGeorge, \bfnmEdward I\binitsE. I. (\byear2019). \btitleSimultaneous variable and covariance selection with the multivariate spike-and-slab lasso. \bjournalJournal of Computational and Graphical Statistics \bvolume28 \bpages921–931. \endbibitem
  20. {barticle}[author] \bauthor\bsnmDunson, \bfnmDavid B.\binitsD. B. (\byear2000). \btitleBayesian latent variable models for clustered mixed outcomes. \bjournalJournal of the Royal Statistical Society. Series B (Statistical Methodology) \bvolume62 \bpages355–366. \endbibitem
  21. {barticle}[author] \bauthor\bsnmFan, \bfnmJianqing\binitsJ. and \bauthor\bsnmLv, \bfnmJinchi\binitsJ. (\byear2008). \btitleSure independence screening for ultrahigh dimensional feature space. \bjournalJournal of the Royal Statistical Society: Series B (Statistical Methodology) \bvolume70 \bpages849–911. \endbibitem
  22. {barticle}[author] \bauthor\bsnmFan, \bfnmJianqing\binitsJ. and \bauthor\bsnmZhang, \bfnmWenyang\binitsW. (\byear1999). \btitleStatistical estimation in varying coefficient models. \bjournalThe Annals of Statistics \bvolume27 \bpages1491 – 1518. \endbibitem
  23. {barticle}[author] \bauthor\bsnmFitzmaurice, \bfnmGarrett M.\binitsG. M. and \bauthor\bsnmLaird, \bfnmNan M.\binitsN. M. (\byear1995). \btitleRegression models for a bivariate discrete and continuous outcome with clustering. \bjournalJournal of the American Statistical Association \bvolume90 \bpages845–852. \endbibitem
  24. {barticle}[author] \bauthor\bsnmGelman, \bfnmAndrew\binitsA., \bauthor\bsnmHwang, \bfnmJessica\binitsJ. and \bauthor\bsnmVehtari, \bfnmAki\binitsA. (\byear2014). \btitleUnderstanding predictive information criteria for Bayesian models. \bjournalStatistics and Computing \bvolume24 \bpages997–1016. \endbibitem
  25. {barticle}[author] \bauthor\bsnmGhosh, \bfnmMalay\binitsM. (\byear2021). \btitleExponential tail bounds for chisquared random variables. \bjournalJournal of Statistical Theory and Practice \bvolume15 \bpages1-6. \endbibitem
  26. {barticle}[author] \bauthor\bsnmGhosh, \bfnmSatyajit\binitsS., \bauthor\bsnmKhare, \bfnmKshitij\binitsK. and \bauthor\bsnmMichailidis, \bfnmGeorge\binitsG. (\byear2019). \btitleHigh-dimensional posterior consistency in Bayesian vector autoregressive models. \bjournalJournal of the American Statistical Association \bvolume114 \bpages735-748. \endbibitem
  27. {barticle}[author] \bauthor\bsnmGriffin, \bfnmJim E.\binitsJ. E. and \bauthor\bsnmBrown, \bfnmPhilip. J.\binitsP. J. (\byear2013). \btitleSome priors for sparse regression modelling. \bjournalBayesian Analysis \bvolume8 \bpages691–702. \endbibitem
  28. {barticle}[author] \bauthor\bsnmGriffin, \bfnmJ E\binitsJ. E., \bauthor\bsnmŁatuszyński, \bfnmK G\binitsK. G. and \bauthor\bsnmSteel, \bfnmM F J\binitsM. F. J. (\byear2020). \btitleIn search of lost mixing time: adaptive Markov chain Monte Carlo schemes for Bayesian variable selection with very large p. \bjournalBiometrika \bvolume108 \bpages53-69. \endbibitem
  29. {barticle}[author] \bauthor\bsnmHarrison, \bfnmCharles W\binitsC. W., \bauthor\bsnmHe, \bfnmQing\binitsQ. and \bauthor\bsnmHuang, \bfnmHsin-Hsiung\binitsH.-H. (\byear2022). \btitleClustering gene expressions using the table invitation prior. \bjournalGenes \bvolume13 \bpages2036. \endbibitem
  30. {barticle}[author] \bauthor\bsnmHe, \bfnmKevin\binitsK., \bauthor\bsnmXu, \bfnmHan\binitsH. and \bauthor\bsnmKang, \bfnmJian\binitsJ. (\byear2019). \btitleA selective overview of feature screening methods with applications to neuroimaging data. \bjournalWIREs Computational Statistics \bvolume11 \bpagese1454. \endbibitem
  31. {barticle}[author] \bauthor\bsnmHwang, \bfnmBeom Seuk\binitsB. S. and \bauthor\bsnmPennell, \bfnmMichael L.\binitsM. L. (\byear2014). \btitleSemiparametric Bayesian joint modeling of a binary and continuous outcome with applications in toxicological risk assessment. \bjournalStatistics in Medicine \bvolume33 \bpages1162-1175. \endbibitem
  32. {bbook}[author] \bauthor\bsnmJackman, \bfnmSimon\binitsS. (\byear2009). \btitleBayesian Analysis for the Social Sciences. \bpublisherJohn Wiley & Sons. \endbibitem
  33. {barticle}[author] \bauthor\bsnmKhare, \bfnmKshitij\binitsK. and \bauthor\bsnmSu, \bfnmZhihua\binitsZ. (\byear2023). \btitleResponse variable selection in multivariate linear regression. \bjournalStatistica Sinica (to appear). \endbibitem
  34. {barticle}[author] \bauthor\bsnmKoner, \bfnmSalil\binitsS. and \bauthor\bsnmWilliams, \bfnmJonathan P.\binitsJ. P. (\byear2023). \btitleThe EAS approach to variable selection for multivariate response data in high-dimensional settings. \bjournalElectronic Journal of Statistics \bvolume17 \bpages1947 – 1995. \endbibitem
  35. {barticle}[author] \bauthor\bsnmKuchibhotla, \bfnmArun K.\binitsA. K., \bauthor\bsnmKolassa, \bfnmJohn E.\binitsJ. E. and \bauthor\bsnmKuffner, \bfnmTodd A.\binitsT. A. (\byear2022). \btitlePost-Selection Inference. \bjournalAnnual Review of Statistics and Its Application \bvolume9 \bpages505-527. \endbibitem
  36. {barticle}[author] \bauthor\bsnmKundu, \bfnmDebamita\binitsD., \bauthor\bsnmMitra, \bfnmRiten\binitsR. and \bauthor\bsnmGaskins, \bfnmJeremy T.\binitsJ. T. (\byear2021). \btitleBayesian variable selection for multioutcome models through shared shrinkage. \bjournalScandinavian Journal of Statistics \bvolume48 \bpages295-320. \endbibitem
  37. {barticle}[author] \bauthor\bsnmLahiri, \bfnmSoumendra N.\binitsS. N. (\byear2021). \btitleNecessary and sufficient conditions for variable selection consistency of the LASSO in high dimensions. \bjournalThe Annals of Statistics \bvolume49 \bpages820 – 844. \endbibitem
  38. {barticle}[author] \bauthor\bsnmLi, \bfnmDongjin\binitsD., \bauthor\bsnmDutta, \bfnmSomak\binitsS. and \bauthor\bsnmRoy, \bfnmVivekananda\binitsV. (\byear2023). \btitleModel based screening embedded Bayesian variable selection for ultra-high dimensional settings. \bjournalJournal of Computational and Graphical Statistics \bvolume32 \bpages61-73. \endbibitem
  39. {barticle}[author] \bauthor\bsnmMatthews, \bfnmB. W.\binitsB. W. (\byear1975). \btitleComparison of the predicted and observed secondary structure of T4 phage lysozyme. \bjournalBiochimica et Biophysica Acta (BBA) - Protein Structure \bvolume405 \bpages442-451. \endbibitem
  40. {barticle}[author] \bauthor\bsnmMcCulloch, \bfnmCharles\binitsC. (\byear2008). \btitleJoint modelling of mixed outcome types using latent variables. \bjournalStatistical Methods in Medical Research \bvolume17 \bpages53-73. \endbibitem
  41. {barticle}[author] \bauthor\bsnmNarisetty, \bfnmNaveen Naidu\binitsN. N. and \bauthor\bsnmHe, \bfnmXuming\binitsX. (\byear2014). \btitleBayesian variable selection with shrinking and diffusing priors. \bjournalThe Annals of Statistics \bvolume42 \bpages789–817. \endbibitem
  42. {barticle}[author] \bauthor\bsnmNeal, \bfnmRadford M\binitsR. M. (\byear2011). \btitleMCMC using Hamiltonian dynamics. \bjournalHandbook of Markov Chain Monte Carlo \bvolume2 \bpages113-162. \endbibitem
  43. {barticle}[author] \bauthor\bsnmNing, \bfnmBo\binitsB., \bauthor\bsnmJeong, \bfnmSeonghyun\binitsS. and \bauthor\bsnmGhosal, \bfnmSubhashis\binitsS. (\byear2020). \btitleBayesian linear regression for multivariate responses under group sparsity. \bjournalBernoulli \bvolume26 \bpages2353–2382. \endbibitem
  44. {barticle}[author] \bauthor\bsnmPal, \bfnmSubhadip\binitsS. and \bauthor\bsnmKhare, \bfnmKshitij\binitsK. (\byear2014). \btitleGeometric ergodicity for Bayesian shrinkage models. \bjournalElectronic Journal of Statistics \bvolume8 \bpages604 – 645. \endbibitem
  45. {barticle}[author] \bauthor\bsnmPal, \bfnmSubahdip\binitsS., \bauthor\bsnmKhare, \bfnmKshitij\binitsK. and \bauthor\bsnmHobert, \bfnmJames P.\binitsJ. P. (\byear2017). \btitleTrace class Markov chains for Bayesian inference with generalized double Pareto shrinkage priors. \bjournalScandinavian Journal of Statistics \bvolume44 \bpages307-323. \endbibitem
  46. {barticle}[author] \bauthor\bsnmPitman, \bfnmJim\binitsJ. (\byear1995). \btitleExchangeable and partially exchangeable random partitions. \bjournalProbability Theory and Related Fields \bvolume102 \bpages145–158. \endbibitem
  47. {barticle}[author] \bauthor\bsnmPolson, \bfnmNicholas G\binitsN. G., \bauthor\bsnmScott, \bfnmJames G\binitsJ. G. and \bauthor\bsnmWindle, \bfnmJesse\binitsJ. (\byear2013). \btitleBayesian inference for logistic models using Pólya–Gamma latent variables. \bjournalJournal of the American Statistical Association \bvolume108 \bpages1339–1349. \endbibitem
  48. {barticle}[author] \bauthor\bsnmRegan, \bfnmMeredith M.\binitsM. M. and \bauthor\bsnmCatalano, \bfnmPaul J.\binitsP. J. (\byear1999). \btitleLikelihood models for clustered binary and continuous outcomes: Application to developmental toxicology. \bjournalBiometrics \bvolume55 \bpages760-768. \endbibitem
  49. {barticle}[author] \bauthor\bsnmRoberts, \bfnmGareth O.\binitsG. O. and \bauthor\bsnmRosenthal, \bfnmJeffrey S.\binitsJ. S. (\byear1998). \btitleMarkov-chain Monte Carlo: Some practical implications of theoretical results. \bjournalThe Canadian Journal of Statistics \bvolume26 \bpages5–20. \endbibitem
  50. {barticle}[author] \bauthor\bsnmRočková, \bfnmVeronika\binitsV. (\byear2018). \btitleBayesian estimation of sparse signals with a continuous spike-and-slab prior. \bjournalThe Annals of Statistics \bvolume46 \bpages401 – 437. \endbibitem
  51. {barticle}[author] \bauthor\bsnmRue, \bfnmHåvard\binitsH., \bauthor\bsnmMartino, \bfnmSara\binitsS. and \bauthor\bsnmChopin, \bfnmNicolas\binitsN. (\byear2009). \btitleApproximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. \bjournalJournal of the Royal Statistical Society: Series B (Statistical Methodology) \bvolume71 \bpages319-392. \endbibitem
  52. {barticle}[author] \bauthor\bsnmSchwarz, \bfnmGideon\binitsG. (\byear1978). \btitleEstimating the dimension of a model. \bjournalThe Annals of Statistics \bvolume6 \bpages461–464. \endbibitem
  53. {barticle}[author] \bauthor\bsnmShin, \bfnmMinsuk\binitsM., \bauthor\bsnmBhattacharya, \bfnmAnirban\binitsA. and \bauthor\bsnmJohnson, \bfnmValen E.\binitsV. E. (\byear2018). \btitleScalable Bayesian variable selection using nonlocal prior densities in ultrahigh-dimensional settings. \bjournalStatistica Sinica \bvolume28 \bpages1053–1078. \endbibitem
  54. {barticle}[author] \bauthor\bsnmSong, \bfnmQifan\binitsQ. and \bauthor\bsnmLiang, \bfnmFaming\binitsF. (\byear2023). \btitleNearly optimal Bayesian shrinkage for high-dimensional regression. \bjournalScience China Mathematics \bvolume66 \bpages409–442. \endbibitem
  55. {barticle}[author] \bauthor\bsnmSparks, \bfnmDouglas K.\binitsD. K., \bauthor\bsnmKhare, \bfnmKshitij\binitsK. and \bauthor\bsnmGhosh, \bfnmMalay\binitsM. (\byear2015). \btitleNecessary and sufficient conditions for high-dimensional posterior consistency under g𝑔gitalic_g-priors. \bjournalBayesian Analysis \bvolume10 \bpages627 – 664. \endbibitem
  56. {barticle}[author] \bauthor\bsnmStamey, \bfnmJames D.\binitsJ. D., \bauthor\bsnmNatanegara, \bfnmFanni\binitsF. and \bauthor\bsnmJr., \bfnmJohn W. Seaman\binitsJ. W. S. (\byear2013). \btitleBayesian sample size determination for a clinical trial with correlated continuous and binary outcomes. \bjournalJournal of Biopharmaceutical Statistics \bvolume23 \bpages790-803. \endbibitem
  57. {barticle}[author] \bauthor\bsnmTang, \bfnmRunlong\binitsR., \bauthor\bsnmBanerjee, \bfnmMoulinath\binitsM. and \bauthor\bsnmMichailidis, \bfnmGeorge\binitsG. (\byear2011). \btitleA two-stage hybrid procedure for estimating an inverse regression function. \bjournalThe Annals of Statistics \bvolume39 \bpages956 – 989. \endbibitem
  58. {barticle}[author] \bauthor\bsnmTibshirani, \bfnmR.\binitsR. (\byear1996). \btitleRegression shrinkage and selection via the lasso. \bjournalJournal of the Royal Statistical Society: Series B (Statistical Methodology) \bvolume58 \bpages267–288. \endbibitem
  59. {barticle}[author] \bauthor\bparticlevan der \bsnmPas, \bfnmS. L.\binitsS. L., \bauthor\bsnmKleijn, \bfnmB. J. K.\binitsB. J. K. and \bauthor\bparticlevan der \bsnmVaart, \bfnmA. W.\binitsA. W. (\byear2014). \btitleThe horseshoe estimator: Posterior concentration around nearly black vectors. \bjournalElectronic Journal of Statistics \bvolume8 \bpages2585 – 2618. \endbibitem
  60. {barticle}[author] \bauthor\bsnmWagner, \bfnmHelga\binitsH. and \bauthor\bsnmTüchler, \bfnmRegina\binitsR. (\byear2010). \btitleBayesian estimation of random effects models for multivariate responses of mixed data. \bjournalComputational Statistics & Data Analysis \bvolume54 \bpages1206-1218. \endbibitem
  61. {barticle}[author] \bauthor\bsnmWang, \bfnmShao-Hsuan\binitsS.-H., \bauthor\bsnmBai, \bfnmRay\binitsR. and \bauthor\bsnmHuang, \bfnmHsin-Hsiung\binitsH.-H. (\byear2022). \btitleCorrigendum to “High-dimensional multivariate posterior consistency under global-local shrinkage priors” [J. Multivariate Anal. 167 (2018) 157-170]. \bjournalTechnical report. \endbibitem
  62. {barticle}[author] \bauthor\bsnmWang, \bfnmXin\binitsX. and \bauthor\bsnmRoy, \bfnmVivekananda\binitsV. (\byear2018). \btitleGeometric ergodicity of Pólya-Gamma Gibbs sampler for Bayesian logistic regression with a flat prior. \bjournalElectronic Journal of Statistics \bvolume12 \bpages3295 – 3311. \endbibitem
  63. {barticle}[author] \bauthor\bsnmWatanabe, \bfnmSumio\binitsS. (\byear2010). \btitleAsymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. \bjournalJournal of Machine Learning Research \bvolume11 \bpages3571–3594. \endbibitem
  64. {barticle}[author] \bauthor\bsnmYang, \bfnmYun\binitsY., \bauthor\bsnmWainwright, \bfnmMartin J.\binitsM. J. and \bauthor\bsnmJordan, \bfnmMichael I.\binitsM. I. (\byear2016). \btitleOn the computational complexity of high-dimensional Bayesian variable selection. \bjournalThe Annals of Statistics \bvolume44 \bpages2497 – 2532. \endbibitem
  65. {barticle}[author] \bauthor\bsnmYoo, \bfnmWilliam Weimin\binitsW. W. and \bauthor\bsnmGhosal, \bfnmSubhashis\binitsS. (\byear2019). \btitleBayesian mode and maximum estimation and accelerated rates of contraction. \bjournalBernoulli \bvolume25 \bpages2330 – 2358. \endbibitem
  66. {barticle}[author] \bauthor\bsnmZhang, \bfnmRuoyang\binitsR. and \bauthor\bsnmGhosh, \bfnmMalay\binitsM. (\byear2022). \btitleUltra high-dimensional multivariate posterior contraction rate under shrinkage priors. \bjournalJournal of Multivariate Analysis \bvolume187 \bpages104835. \endbibitem
  67. {barticle}[author] \bauthor\bsnmZhou, \bfnmHua\binitsH. and \bauthor\bsnmLi, \bfnmLexin\binitsL. (\byear2014). \btitleRegularized matrix regression. \bjournalJournal of the Royal Statistical Society: Series B (Statistical Methodology) \bvolume76 \bpages463–483. \endbibitem
  68. {barticle}[author] \bauthor\bsnmZhou, \bfnmMingyuan\binitsM. and \bauthor\bsnmCarin, \bfnmLawrence\binitsL. (\byear2013). \btitleNegative binomial process count and mixture modeling. \bjournalIEEE Transactions on Pattern Analysis and Machine Intelligence \bvolume37 \bpages307–320. \endbibitem
  69. {barticle}[author] \bauthor\bsnmZhu, \bfnmShenghuo\binitsS. (\byear2012). \btitleA short note on the tail bound of Wishart distribution. \bjournalarXiv:1212.5860. \endbibitem
  70. {barticle}[author] \bauthor\bsnmZou, \bfnmHui\binitsH. (\byear2006). \btitleThe adaptive lasso and its oracle properties. \bjournalJournal of the American Statistical Association \bvolume101 \bpages1418–1429. \endbibitem
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com