Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Differentiable Matrix Square Root and Inverse Square Root (2201.12543v2)

Published 29 Jan 2022 in cs.CV and cs.LG

Abstract: Computing the matrix square root and its inverse in a differentiable manner is important in a variety of computer vision tasks. Previous methods either adopt the Singular Value Decomposition (SVD) to explicitly factorize the matrix or use the Newton-Schulz iteration (NS iteration) to derive the approximate solution. However, both methods are not computationally efficient enough in either the forward pass or the backward pass. In this paper, we propose two more efficient variants to compute the differentiable matrix square root and the inverse square root. For the forward propagation, one method is to use Matrix Taylor Polynomial (MTP), and the other method is to use Matrix Pad\'e Approximants (MPA). The backward gradient is computed by iteratively solving the continuous-time Lyapunov equation using the matrix sign function. A series of numerical tests show that both methods yield considerable speed-up compared with the SVD or the NS iteration. Moreover, we validate the effectiveness of our methods in several real-world applications, including de-correlated batch normalization, second-order vision transformer, global covariance pooling for large-scale and fine-grained recognition, attentive covariance pooling for video recognition, and neural style transfer. The experimental results demonstrate that our methods can also achieve competitive and even slightly better performances. The Pytorch implementation is available at https://github.com/KingJamesSong/FastDifferentiableMatSqrt

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yue Song (56 papers)
  2. Nicu Sebe (270 papers)
  3. Wei Wang (1793 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.