Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Robustness in Deep Learning: Attacks on Fragile Neurons (2201.12347v1)

Published 31 Jan 2022 in cs.LG and cs.CR

Abstract: We identify fragile and robust neurons of deep learning architectures using nodal dropouts of the first convolutional layer. Using an adversarial targeting algorithm, we correlate these neurons with the distribution of adversarial attacks on the network. Adversarial robustness of neural networks has gained significant attention in recent times and highlights intrinsic weaknesses of deep learning networks against carefully constructed distortion applied to input images. In this paper, we evaluate the robustness of state-of-the-art image classification models trained on the MNIST and CIFAR10 datasets against the fast gradient sign method attack, a simple yet effective method of deceiving neural networks. Our method identifies the specific neurons of a network that are most affected by the adversarial attack being applied. We, therefore, propose to make fragile neurons more robust against these attacks by compressing features within robust neurons and amplifying the fragile neurons proportionally.

Citations (2)

Summary

We haven't generated a summary for this paper yet.