Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A positivity preserving strategy for entropy stable discontinuous Galerkin discretizations of the compressible Euler and Navier-Stokes equations (2201.11816v2)

Published 27 Jan 2022 in math.NA and cs.NA

Abstract: High-order entropy-stable discontinuous Galerkin methods for the compressible Euler and Navier-Stokes equations require the positivity of thermodynamic quantities in order to guarantee their well-posedness. In this work, we introduce a positivity limiting strategy for entropy-stable discontinuous Galerkin discretizations constructed by blending high order solutions with a low order positivity-preserving discretization. The proposed low order discretization is semi-discretely entropy stable, and the proposed limiting strategy is positivity preserving for the compressible Euler and Navier-Stokes equations. Numerical experiments confirm the high order accuracy and robustness of the proposed strategy.

Citations (18)

Summary

We haven't generated a summary for this paper yet.