Papers
Topics
Authors
Recent
Search
2000 character limit reached

An Algorithmic Framework for Locally Constrained Homomorphisms

Published 27 Jan 2022 in cs.DS, cs.CC, cs.DM, and math.CO | (2201.11731v1)

Abstract: A homomorphism $f$ from a guest graph $G$ to a host graph $H$ is locally bijective, injective or surjective if for every $u\in V(G)$, the restriction of $f$ to the neighbourhood of $u$ is bijective, injective or surjective, respectively. The corresponding decision problems, LBHOM, LIHOM and LSHOM, are well studied both on general graphs and on special graph classes. Apart from complexity results when the problems are parameterized by the treewidth and maximum degree of the guest graph, the three problems still lack a thorough study of their parameterized complexity. This paper fills this gap: we prove a number of new FPT, W[1]-hard and para-NP-complete results by considering a hierarchy of parameters of the guest graph $G$. For our FPT results, we do this through the development of a new algorithmic framework that involves a general ILP model. To illustrate the applicability of the new framework, we also use it to prove FPT results for the Role Assignment problem, which originates from social network theory and is closely related to locally surjective homomorphisms.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.