Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unimodular totally disconnected locally compact groups of rational discrete cohomological dimension one (2201.10847v2)

Published 26 Jan 2022 in math.GR

Abstract: It is shown that a Stallings--Swan theorem holds in a totally disconnected locally compact (= t.d.l.c.) context (cf. Thm. B). More precisely, a compactly generated $\mathcal{CO}$-bounded t.d.l.c. group $G$ of rational discrete cohomological dimension less than or equal to $1$ must be isomorphic to the fundamental group of a finite graph of profinite groups. This result generalises Dunwoody's rational version of the classical Stallings--Swan theorem to t.d.l.c. groups. The proof of Theorem B is based on the fact that a compactly generated unimodular t.d.l.c. group with rational discrete cohomological dimension $1$ has necessarily non-positive Euler--Poincar\'e characteristic (cf. Thm. G).

Summary

We haven't generated a summary for this paper yet.