Papers
Topics
Authors
Recent
2000 character limit reached

Basic Quantum Algorithms

Published 25 Jan 2022 in quant-ph and cs.CC | (2201.10574v7)

Abstract: Quantum computing is evolving so rapidly that it forces us to revisit, rewrite, and update the foundations of the theory. Basic Quantum Algorithms revisits the earliest quantum algorithms. The journey began in 1985 with Deutsch attempting to evaluate a function at two domain points simultaneously. Then, in 1992, Deutsch and Jozsa created a quantum algorithm that determines whether a Boolean function is constant or balanced. The following year, Bernstein and Vazirani realized that the same algorithm could be used to identify a specific Boolean function within a set of linear Boolean functions. In 1994, Simon introduced a novel quantum algorithm that determined whether a function was one-to-one or two-to-one exponentially faster than any classical algorithm for the same problem. That same year, Shor developed two groundbreaking quantum algorithms for integer factoring and calculating discrete logarithms, posing a threat to the widely used cryptography methods. In 1995, Kitaev proposed an alternative version of Shor's algorithms that proved valuable in numerous other applications. The following year, Grover devised a quantum search algorithm that was quadratically faster than its classical equivalent. With an emphasis on the circuit model, this work provides a detailed description of all these remarkable algorithms.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.