Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Multi-level Context for Informational Bias Detection by Contrastive Learning and Sentential Graph Network (2201.10376v1)

Published 25 Jan 2022 in cs.CL

Abstract: Informational bias is widely present in news articles. It refers to providing one-sided, selective or suggestive information of specific aspects of certain entity to guide a specific interpretation, thereby biasing the reader's opinion. Sentence-level informational bias detection is a very challenging task in a way that such bias can only be revealed together with the context, examples include collecting information from various sources or analyzing the entire article in combination with the background. In this paper, we integrate three levels of context to detect the sentence-level informational bias in English news articles: adjacent sentences, whole article, and articles from other news outlets describing the same event. Our model, MultiCTX (Multi-level ConTeXt), uses contrastive learning and sentence graphs together with Graph Attention Network (GAT) to encode these three degrees of context at different stages by tactically composing contrastive triplets and constructing sentence graphs within events. Our experiments proved that contrastive learning together with sentence graphs effectively incorporates context in varying degrees and significantly outperforms the current SOTA model sentence-wise in informational bias detection.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shijia Guo (1 paper)
  2. Kenny Q. Zhu (50 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.