2000 character limit reached
Toeplitz and related operators on polyanalytic Fock spaces (2201.10230v2)
Published 25 Jan 2022 in math.FA
Abstract: We give a characterization of compact and Fredholm operators on polyanalytic Fock spaces in terms of limit operators. As an application we obtain a generalization of the Bauer-Isralowitz theorem using a matrix valued Berezin type transform. We then apply this theorem to Toeplitz and Hankel operators to obtain necessary and sufficient conditions for compactness. As it turns out, whether or not a Toeplitz or Hankel operator is compact does not depend on the polyanalytic order. For Hankel operators this even holds on the true polyanalytic Fock spaces.