Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A sine transform based preconditioned MINRES method for all-at-once systems from constant and variable-coefficient evolutionary PDEs (2201.10062v3)

Published 25 Jan 2022 in math.NA and cs.NA

Abstract: In this work, we propose a simple yet generic preconditioned Krylov subspace method for a large class of nonsymmetric block Toeplitz all-at-once systems arising from discretizing evolutionary partial differential equations. Namely, our main result is to propose two novel symmetric positive definite preconditioners, which can be efficiently diagonalized by the discrete sine transform matrix. More specifically, our approach is to first permute the original linear system to obtain a symmetric one, and subsequently develop desired preconditioners based on the spectral symbol of the modified matrix. Then, we show that the eigenvalues of the preconditioned matrix sequences are clustered around $\pm 1$, which entails rapid convergence when the minimal residual method is devised. Alternatively, when the conjugate gradient method on the normal equations is used, we show that our preconditioner is effective in the sense that the eigenvalues of the preconditioned matrix sequence are clustered around unity. An extension of our proposed preconditioned method is given for high-order backward difference time discretization schemes, which can be applied on a wide range of time-dependent equations. Numerical examples are given, also in the variable-coefficient setting, to demonstrate the effectiveness of our proposed preconditioners, which consistently outperforms an existing block circulant preconditioner discussed in the relevant literature.

Citations (13)

Summary

We haven't generated a summary for this paper yet.