Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heat Conduction Plate Layout Optimization using Physics-driven Convolutional Neural Networks (2201.10002v1)

Published 21 Jan 2022 in cs.LG and cs.CE

Abstract: The layout optimization of the heat conduction is essential during design in engineering, especially for thermal sensible products. When the optimization algorithm iteratively evaluates different loading cases, the traditional numerical simulation methods used usually lead to a substantial computational cost. To effectively reduce the computational effort, data-driven approaches are used to train a surrogate model as a mapping between the prescribed external loads and various geometry. However, the existing model are trained by data-driven methods which requires intensive training samples that from numerical simulations and not really effectively solve the problem. Choosing the steady heat conduction problems as examples, this paper proposes a Physics-driven Convolutional Neural Networks (PD-CNN) method to infer the physical field solutions for random varied loading cases. After that, the Particle Swarm Optimization (PSO) algorithm is used to optimize the sizes and the positions of the hole masks in the prescribed design domain, and the average temperature value of the entire heat conduction field is minimized, and the goal of minimizing heat transfer is achieved. Compared with the existing data-driven approaches, the proposed PD-CNN optimization framework not only predict field solutions that are highly consistent with conventional simulation results, but also generate the solution space with without any pre-obtained training data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hao Ma (116 papers)
  2. Yang Sun (145 papers)
  3. Mario Chiarelli (1 paper)
Citations (2)

Summary

We haven't generated a summary for this paper yet.