Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Optimal Fair Classification Trees: Trade-offs Between Interpretability, Fairness, and Accuracy (2201.09932v5)

Published 24 Jan 2022 in cs.LG, cs.AI, and math.OC

Abstract: The increasing use of machine learning in high-stakes domains -- where people's livelihoods are impacted -- creates an urgent need for interpretable, fair, and highly accurate algorithms. With these needs in mind, we propose a mixed integer optimization (MIO) framework for learning optimal classification trees -- one of the most interpretable models -- that can be augmented with arbitrary fairness constraints. In order to better quantify the "price of interpretability", we also propose a new measure of model interpretability called decision complexity that allows for comparisons across different classes of machine learning models. We benchmark our method against state-of-the-art approaches for fair classification on popular datasets; in doing so, we conduct one of the first comprehensive analyses of the trade-offs between interpretability, fairness, and predictive accuracy. Given a fixed disparity threshold, our method has a price of interpretability of about 4.2 percentage points in terms of out-of-sample accuracy compared to the best performing, complex models. However, our method consistently finds decisions with almost full parity, while other methods rarely do.

Citations (7)

Summary

We haven't generated a summary for this paper yet.