Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Classification under Gaussian Mechanism: Calibrating the Attack to Sensitivity (2201.09751v4)

Published 24 Jan 2022 in cs.IT and math.IT

Abstract: This work studies anomaly detection under differential privacy (DP) with Gaussian perturbation using both statistical and information-theoretic tools. In our setting, the adversary aims to modify the content of a statistical dataset by inserting additional data without being detected by using the DP guarantee to her own benefit. To this end, we characterize information-theoretic and statistical thresholds for the first and second-order statistics of the adversary's attack, which balances the privacy budget and the impact of the attack in order to remain undetected. Additionally, we introduce a new privacy metric based on Chernoff information for classifying adversaries under differential privacy as a stronger alternative to $(\epsilon, \delta)-$ and Kullback-Leibler DP for the Gaussian mechanism. Analytical results are supported by numerical evaluations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.