Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Large and Diverse Arabic Corpus for Language Modeling (2201.09227v3)

Published 23 Jan 2022 in cs.CL and cs.AI

Abstract: LLMs (LMs) have introduced a major paradigm shift in NLP modeling where large pre-trained LMs became integral to most of the NLP tasks. The LMs are intelligent enough to find useful and relevant representations of the language without any supervision. Perhaps, these models are used to fine-tune typical NLP tasks with significantly high accuracy as compared to the traditional approaches. Conversely, the training of these models requires a massively large corpus that is a good representation of the language. English LMs generally perform better than their other language counterparts, due to the availability of massive English corpora. This work elaborates on the design and development of a large Arabic corpus. It consists of over 500 GB of Arabic cleaned text targeted at improving cross-domain knowledge and downstream generalization capability of large-scale LLMs. Moreover, the corpus is utilized in the training of a large Arabic LM. In order to evaluate the effectiveness of the LM, a number of typical NLP tasks are fine-tuned. The tasks demonstrate a significant boost from 4.5 to 8.5% when compared to tasks fine-tuned on multi-lingual BERT (mBERT). To the best of my knowledge, this is currently the largest clean and diverse Arabic corpus ever collected.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Abbas Raza Ali (7 papers)
  2. Muhammad Ajmal Siddiqui (1 paper)
  3. Rema Algunaibet (1 paper)
  4. Hasan Raza Ali (1 paper)