Papers
Topics
Authors
Recent
2000 character limit reached

GAP-Gen: Guided Automatic Python Code Generation

Published 19 Jan 2022 in cs.PL, cs.CL, cs.LG, and cs.SE | (2201.08810v2)

Abstract: Automatic code generation from natural language descriptions can be highly beneficial during the process of software development. In this work, we propose GAP-Gen, a Guided Automatic Python Code Generation method based on Python syntactic constraints and semantic constraints. We first introduce Python syntactic constraints in the form of Syntax-Flow, which is a simplified version of Abstract Syntax Tree (AST) reducing the size and high complexity of Abstract Syntax Tree but maintaining crucial syntactic information of Python code. In addition to Syntax-Flow, we introduce Variable-Flow which abstracts variable and function names consistently through out the code. In our work, rather than pretraining, we focus on modifying the finetuning process which reduces computational requirements but retains high generation performance on automatic Python code generation task. GAP-Gen fine-tunes the transformer based LLMs T5 and CodeT5 using the Code-to-Docstring datasets CodeSearchNet, CodeSearchNet AdvTest and Code-Docstring Corpus from EdinburghNLP. Our experiments show that GAP-Gen achieves better results on automatic Python code generation task than previous works.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.