Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations (2201.08614v2)

Published 21 Jan 2022 in cs.IR

Abstract: Enabling non-discrimination for end-users of recommender systems by introducing consumer fairness is a key problem, widely studied in both academia and industry. Current research has led to a variety of notions, metrics, and unfairness mitigation procedures. The evaluation of each procedure has been heterogeneous and limited to a mere comparison with models not accounting for fairness. It is hence hard to contextualize the impact of each mitigation procedure w.r.t. the others. In this paper, we conduct a systematic analysis of mitigation procedures against consumer unfairness in rating prediction and top-n recommendation tasks. To this end, we collected 15 procedures proposed in recent top-tier conferences and journals. Only 8 of them could be reproduced. Under a common evaluation protocol, based on two public data sets, we then studied the extent to which recommendation utility and consumer fairness are impacted by these procedures, the interplay between two primary fairness notions based on equity and independence, and the demographic groups harmed by the disparate impact. Our study finally highlights open challenges and future directions in this field. The source code is available at https://github.com/jackmedda/C-Fairness-RecSys.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ludovico Boratto (24 papers)
  2. Gianni Fenu (29 papers)
  3. Mirko Marras (38 papers)
  4. Giacomo Medda (8 papers)
Citations (23)