Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LRSVRG-IMC: An SVRG-Based Algorithm for LowRank Inductive Matrix Completion (2201.08516v1)

Published 21 Jan 2022 in cs.LG

Abstract: Low-rank inductive matrix completion (IMC) is currently widely used in IoT data completion, recommendation systems, and so on, as the side information in IMC has demonstrated great potential in reducing sample point remains a major obstacle for the convergence of the nonconvex solutions to IMC. What's more, carefully choosing the initial solution alone does not usually help remove the saddle points. To address this problem, we propose a stocastic variance reduction gradient-based algorithm called LRSVRG-IMC. LRSVRG-IMC can escape from the saddle points under various low-rank and sparse conditions with a properly chosen initial input. We also prove that LRSVVRG-IMC achieves both a linear convergence rate and a near-optimal sample complexity. The superiority and applicability of LRSVRG-IMC are verified via experiments on synthetic datasets.

Summary

We haven't generated a summary for this paper yet.