Papers
Topics
Authors
Recent
Search
2000 character limit reached

Empirical likelihood method for complete independence test on high dimensional data

Published 21 Jan 2022 in math.ST, stat.ME, and stat.TH | (2201.08492v1)

Abstract: Given a random sample of size $n$ from a $p$ dimensional random vector, where both $n$ and $p$ are large, we are interested in testing whether the $p$ components of the random vector are mutually independent. This is the so-called complete independence test. In the multivariate normal case, it is equivalent to testing whether the correlation matrix is an identity matrix. In this paper, we propose a one-sided empirical likelihood method for the complete independence test for multivariate normal data based on squared sample correlation coefficients. The limiting distribution for our one-sided empirical likelihood test statistic is proved to be $Z2I(Z>0)$ when both $n$ and $p$ tend to infinity, where $Z$ is a standard normal random variable. In order to improve the power of the empirical likelihood test statistic, we also introduce a rescaled empirical likelihood test statistic. We carry out an extensive simulation study to compare the performance of the rescaled empirical likelihood method and two other statistics which are related to the sum of squared sample correlation coefficients.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.