Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Addressing Maximization Bias in Reinforcement Learning with Two-Sample Testing (2201.08078v4)

Published 20 Jan 2022 in cs.LG

Abstract: Value-based reinforcement-learning algorithms have shown strong results in games, robotics, and other real-world applications. Overestimation bias is a known threat to those algorithms and can sometimes lead to dramatic performance decreases or even complete algorithmic failure. We frame the bias problem statistically and consider it an instance of estimating the maximum expected value (MEV) of a set of random variables. We propose the $T$-Estimator (TE) based on two-sample testing for the mean, that flexibly interpolates between over- and underestimation by adjusting the significance level of the underlying hypothesis tests. We also introduce a generalization, termed $K$-Estimator (KE), that obeys the same bias and variance bounds as the TE and relies on a nearly arbitrary kernel function. We introduce modifications of $Q$-Learning and the Bootstrapped Deep $Q$-Network (BDQN) using the TE and the KE, and prove convergence in the tabular setting. Furthermore, we propose an adaptive variant of the TE-based BDQN that dynamically adjusts the significance level to minimize the absolute estimation bias. All proposed estimators and algorithms are thoroughly tested and validated on diverse tasks and environments, illustrating the bias control and performance potential of the TE and KE.

Citations (2)

Summary

We haven't generated a summary for this paper yet.