Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EdgeMap: CrowdSourcing High Definition Map in Automotive Edge Computing (2201.07973v1)

Published 20 Jan 2022 in cs.LG, cs.NI, and eess.SP

Abstract: High definition (HD) map needs to be updated frequently to capture road changes, which is constrained by limited specialized collection vehicles. To maintain an up-to-date map, we explore crowdsourcing data from connected vehicles. Updating the map collaboratively is, however, challenging under constrained transmission and computation resources in dynamic networks. In this paper, we propose EdgeMap, a crowdsourcing HD map to minimize the usage of network resources while maintaining the latency requirements. We design a DATE algorithm to adaptively offload vehicular data on a small time scale and reserve network resources on a large time scale, by leveraging the multi-agent deep reinforcement learning and Gaussian process regression. We evaluate the performance of EdgeMap with extensive network simulations in a time-driven end-to-end simulator. The results show that EdgeMap reduces more than 30% resource usage as compared to state-of-the-art solutions.

Citations (7)

Summary

We haven't generated a summary for this paper yet.