Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Enhances Algorithms for Quantifying Non-Equilibrium Dynamics in Correlation Spectroscopy Experiments to Reach Frame-Rate-Limited Time Resolution (2201.07889v1)

Published 17 Jan 2022 in eess.SP, cond-mat.mtrl-sci, cs.LG, and physics.ins-det

Abstract: Analysis of X-ray Photon Correlation Spectroscopy (XPCS) data for non-equilibrium dynamics often requires manual binning of age regions of an intensity-intensity correlation function. This leads to a loss of temporal resolution and accumulation of systematic error for the parameters quantifying the dynamics, especially in cases with considerable noise. Moreover, the experiments with high data collection rates create the need for automated online analysis, where manual binning is not possible. Here, we integrate a denoising autoencoder model into algorithms for analysis of non-equilibrium two-time intensity-intensity correlation functions. The model can be applied to an input of an arbitrary size. Noise reduction allows to extract the parameters that characterize the sample dynamics with temporal resolution limited only by frame rates. Not only does it improve the quantitative usage of the data, but it also creates the potential for automating the analytical workflow. Various approaches for uncertainty quantification and extension of the model for anomalies detection are discussed.

Citations (2)

Summary

We haven't generated a summary for this paper yet.