Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A trust region reduced basis Pascoletti-Serafini algorithm for multi-objective PDE-constrained parameter optimization (2201.07744v1)

Published 19 Jan 2022 in math.NA, cs.NA, and math.OC

Abstract: In the present paper non-convex multi-objective parameter optimization problems are considered which are governed by elliptic parametrized partial differential equations (PDEs). To solve these problems numerically the Pascoletti-Serafini scalarization is applied and the obtained scalar optimization problems are solved by an augmented Lagrangian method. However, due to the PDE constraints, the numerical solution is very expensive so that a model reduction is utilized by using the reduced basis (RB) method. The quality of the RB approximation is ensured by a trust-region strategy which does not require any offline procedure, where the RB functions are computed in a greedy algorithm. Moreover, convergence of the proposed method is guaranteed. Numerical examples illustrate the efficiency of the proposed solution technique.

Citations (10)

Summary

We haven't generated a summary for this paper yet.