Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Open Source Handwritten Text Recognition on Medieval Manuscripts using Mixed Models and Document-Specific Finetuning (2201.07661v1)

Published 19 Jan 2022 in cs.CV

Abstract: This paper deals with the task of practical and open source Handwritten Text Recognition (HTR) on German medieval manuscripts. We report on our efforts to construct mixed recognition models which can be applied out-of-the-box without any further document-specific training but also serve as a starting point for finetuning by training a new model on a few pages of transcribed text (ground truth). To train the mixed models we collected a corpus of 35 manuscripts and ca. 12.5k text lines for two widely used handwriting styles, Gothic and Bastarda cursives. Evaluating the mixed models out-of-the-box on four unseen manuscripts resulted in an average Character Error Rate (CER) of 6.22%. After training on 2, 4 and eventually 32 pages the CER dropped to 3.27%, 2.58%, and 1.65%, respectively. While the in-domain recognition and training of models (Bastarda model to Bastarda material, Gothic to Gothic) unsurprisingly yielded the best results, finetuning out-of-domain models to unseen scripts was still shown to be superior to training from scratch. Our new mixed models have been made openly available to the community.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Christian Reul (12 papers)
  2. Stefan Tomasek (1 paper)
  3. Florian Langhanki (1 paper)
  4. Uwe Springmann (10 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.