Papers
Topics
Authors
Recent
2000 character limit reached

Model-driven Cluster Resource Management for AI Workloads in Edge Clouds

Published 18 Jan 2022 in cs.DC, cs.SY, and eess.SY | (2201.07312v1)

Abstract: Since emerging edge applications such as Internet of Things (IoT) analytics and augmented reality have tight latency constraints, hardware AI accelerators have been recently proposed to speed up deep neural network (DNN) inference run by these applications. Resource-constrained edge servers and accelerators tend to be multiplexed across multiple IoT applications, introducing the potential for performance interference between latency-sensitive workloads. In this paper, we design analytic models to capture the performance of DNN inference workloads on shared edge accelerators, such as GPU and edgeTPU, under different multiplexing and concurrency behaviors. After validating our models using extensive experiments, we use them to design various cluster resource management algorithms to intelligently manage multiple applications on edge accelerators while respecting their latency constraints. We implement a prototype of our system in Kubernetes and show that our system can host 2.3X more DNN applications in heterogeneous multi-tenant edge clusters with no latency violations when compared to traditional knapsack hosting algorithms.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.