Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bregman Deviations of Generic Exponential Families (2201.07306v4)

Published 18 Jan 2022 in cs.LG

Abstract: We revisit the method of mixture technique, also known as the Laplace method, to study the concentration phenomenon in generic exponential families. Combining the properties of Bregman divergence associated with log-partition function of the family with the method of mixtures for super-martingales, we establish a generic bound controlling the Bregman divergence between the parameter of the family and a finite sample estimate of the parameter. Our bound is time-uniform and makes appear a quantity extending the classical information gain to exponential families, which we call the Bregman information gain. For the practitioner, we instantiate this novel bound to several classical families, e.g., Gaussian, Bernoulli, Exponential, Weibull, Pareto, Poisson and Chi-square yielding explicit forms of the confidence sets and the Bregman information gain. We further numerically compare the resulting confidence bounds to state-of-the-art alternatives for time-uniform concentration and show that this novel method yields competitive results. Finally, we highlight the benefit of our concentration bounds on some illustrative applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Sayak Ray Chowdhury (23 papers)
  2. Patrick Saux (5 papers)
  3. Odalric-Ambrym Maillard (48 papers)
  4. Aditya Gopalan (53 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.