Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Functons of perturbed pairs of dissipative operators (2201.07278v1)

Published 18 Jan 2022 in math.FA, math.CA, math.CV, and math.SP

Abstract: Let $f$ be a function in the inhomogeneous analytic Besov space $B_{\infty,1}1$. For a pair $(L,M)$ of not necessarily commuting maximal dissipative operators, we define the function $f(L,M)$ of $L$ and $M$ as a densely defined linear operator. We prove for $p\in[1,2]$ that if $(L_1,M_1)$ and $(L_2,M_2)$ are pairs of not necessarily commuting maximal dissipative operators such that both differences $L_1-L_2$ and $M_1-M_2$ belong to the Schatten--von Neumann class $\boldsymbol{S}p$ than for an arbitrary function $f$ in the inhomogeneous analytic Besov space $B{\infty,1}1$, the operator difference $f(L_1,M_1)-f(L_2,M_2)$ belongs to $\boldsymbol{S}p$ and the following Lipschitz type estimate holds: $$ |f(L_1,M_1)-f(L_2,M_2)|{\boldsymbol{S}p} \le\operatorname{const}|f|{B_{\infty,1}1}\max\big{|L_1-L_2|{\boldsymbol{S}_p},|M_1-M_2|{\boldsymbol{S}_p}\big}. $$

Summary

We haven't generated a summary for this paper yet.