Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emergent Instabilities in Algorithmic Feedback Loops (2201.07203v1)

Published 18 Jan 2022 in cs.HC and cs.LG

Abstract: Algorithms that aid human tasks, such as recommendation systems, are ubiquitous. They appear in everything from social media to streaming videos to online shopping. However, the feedback loop between people and algorithms is poorly understood and can amplify cognitive and social biases (algorithmic confounding), leading to unexpected outcomes. In this work, we explore algorithmic confounding in collaborative filtering-based recommendation algorithms through teacher-student learning simulations. Namely, a student collaborative filtering-based model, trained on simulated choices, is used by the recommendation algorithm to recommend items to agents. Agents might choose some of these items, according to an underlying teacher model, with new choices then fed back into the student model as new training data (approximating online machine learning). These simulations demonstrate how algorithmic confounding produces erroneous recommendations which in turn lead to instability, i.e., wide variations in an item's popularity between each simulation realization. We use the simulations to demonstrate a novel approach to training collaborative filtering models that can create more stable and accurate recommendations. Our methodology is general enough that it can be extended to other socio-technical systems in order to better quantify and improve the stability of algorithms. These results highlight the need to account for emergent behaviors from interactions between people and algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Keith Burghardt (45 papers)
  2. Kristina Lerman (197 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.