Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active Learning for Open-set Annotation (2201.06758v1)

Published 18 Jan 2022 in cs.LG

Abstract: Existing active learning studies typically work in the closed-set setting by assuming that all data examples to be labeled are drawn from known classes. However, in real annotation tasks, the unlabeled data usually contains a large amount of examples from unknown classes, resulting in the failure of most active learning methods. To tackle this open-set annotation (OSA) problem, we propose a new active learning framework called LfOSA, which boosts the classification performance with an effective sampling strategy to precisely detect examples from known classes for annotation. The LfOSA framework introduces an auxiliary network to model the per-example max activation value (MAV) distribution with a Gaussian Mixture Model, which can dynamically select the examples with highest probability from known classes in the unlabeled set. Moreover, by reducing the temperature $T$ of the loss function, the detection model will be further optimized by exploiting both known and unknown supervision. The experimental results show that the proposed method can significantly improve the selection quality of known classes, and achieve higher classification accuracy with lower annotation cost than state-of-the-art active learning methods. To the best of our knowledge, this is the first work of active learning for open-set annotation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Kun-Peng Ning (11 papers)
  2. Xun Zhao (11 papers)
  3. Yu Li (378 papers)
  4. Sheng-Jun Huang (43 papers)
Citations (28)

Summary

We haven't generated a summary for this paper yet.