Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal randomized quadrature for weighted Sobolev and Besov classes with the Jacobi weight on the ball (2201.06709v1)

Published 18 Jan 2022 in math.NA and cs.NA

Abstract: We consider the numerical integration $${\rm INT}d(f)=\int{\mathbb{B}{d}}f(x)w_\mu(x)dx $$ for the weighted Sobolev classes $BW{r}_{p,\mu}$ and the weighted Besov classes $BB_\taur(L_{p,\mu})$ in the randomized case setting, where $w_\mu, \,\mu\ge0,$ is the classical Jacobi weight on the ball $\Bbb Bd$, $1\le p\le \infty$, $r>(d+2\mu)/p$, and $0<\tau\le\infty$. For the above two classes, we obtain the orders of the optimal quadrature errors in the randomized case setting are $n{-r/d-1/2+(1/p-1/2)_+}$. Compared to the orders $n{-r/d}$ of the optimal quadrature errors in the deterministic case setting, randomness can effectively improve the order of convergence when $p>1$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.