Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homophily in preferences or meetings? Identifying and estimating an iterative network formation model (2201.06694v4)

Published 18 Jan 2022 in econ.EM

Abstract: Is homophily in social and economic networks driven by a taste for homogeneity (preferences) or by a higher probability of meeting individuals with similar attributes (opportunity)? This paper studies identification and estimation of an iterative network game that distinguishes between these two mechanisms. Our approach enables us to assess the counterfactual effects of changing the meeting protocol between agents. As an application, we study the role of preferences and meetings in shaping classroom friendship networks in Brazil. In a network structure in which homophily due to preferences is stronger than homophily due to meeting opportunities, tracking students may improve welfare. Still, the relative benefit of this policy diminishes over the school year.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. Dynamic discrete choice structural models: A survey. Journal of Econometrics 156(1), 38 – 67. Structural Models of Optimization Behavior in Labor, Aging, and Health.
  2. Amemiya, T. (1985). Advanced Econometrics. Harvard University Press.
  3. Badev, A. (2021). Nash equilibria on (un)stable networks. Econometrica 89(3), 1179–1206.
  4. Identification and estimation of a discrete game of complete information. Econometrica 78(5), 1529–1568.
  5. Divide and conquer in ABC: Expectation-propagation algorithms for likelihood-free inference. Handbook of Approximate Bayesian Computation, 415–34.
  6. Expectation propagation for likelihood-free inference. Journal of the American Statistical Association 109(505), 315–333.
  7. Endogenous social interactions with unobserved networks. The Review of Economic Studies.
  8. Blum, M. G. B. (2010). Approximate bayesian computation: A nonparametric perspective. Journal of the American Statistical Association 105(491), 1178–1187.
  9. Homophily and long-run integration in social networks. Journal of Economic Theory 147(5), 1754 – 1786.
  10. Centola, D. (2011). An experimental study of homophily in the adoption of health behavior. Science 334(6060), 1269–1272.
  11. Chandrasekhar, A. (2016). Econometrics of network formation. In The Oxford Handbook of the Economics of Networks, pp. 303–357. Oxford University Press.
  12. Chandrasekhar, A. G. and M. O. Jackson (2021). A network formation model based on subgraphs.
  13. Social capital i: measurement and associations with economic mobility. Nature 608(7921), 108–121.
  14. Social capital ii: determinants of economic connectedness. Nature 608(7921), 122–134.
  15. An empirical model for strategic network formation. In B. Graham and A. de Paula (Eds.), The Econometric Analysis of Network Data, Chapter Chapter 6, pp.  123–148. Academic Press.
  16. Colas, M. and J. M. Morehouse (2022). The environmental cost of land-use restrictions. Quantitative Economics 13(1), 179–223.
  17. An economic model of friendship: Homophily, minorities, and segregation. Econometrica 77(4), 1003–1045.
  18. Identifying the roles of race-based choice and chance in high school friendship network formation. Proceedings of the National Academy of Sciences 107(11), 4857–4861.
  19. de Paula, A. (2017). Econometrics of network models. In B. Honoré, A. Pakes, M. Piazzesi, and L. Samuelson (Eds.), Advances in Economics and Econometrics: Eleventh World Congress, Econometric Society Monographs, pp.  268–323. Cambridge University Press.
  20. Identifying preferences in networks with bounded degree. Econometrica 86(1), 263–288.
  21. Asymptotic properties of approximate Bayesian computation. Biometrika 105(3), 593–607.
  22. Goldsmith-Pinkham, P. and G. W. Imbens (2013). Social networks and the identification of peer effects. Journal of Business & Economic Statistics 31(3), 253–264.
  23. Graham, B. S. (2016). Homophily and transitivity in dynamic network formation. Working Paper 22186, National Bureau of Economic Research.
  24. Graham, B. S. (2017). An econometric model of network formation with degree heterogeneity. Econometrica 85(4), 1033–1063.
  25. On pth roots of stochastic matrices. Linear Algebra and its Applications 435(3), 448 – 463. Special Issue: Dedication to Pete Stewart on the occasion of his 70th birthday.
  26. Hobert, J. P. (2011). Chapter 10 the data augmentation algorithm: Theory and methodology. In Handbook of Markov Chain Monte Carlo, pp.  253–294. CRC Press.
  27. Horn, R. A. and C. R. Johnson (2012). Matrix Analysis. Cambridge University Press.
  28. Hsieh, C.-S. and L. F. Lee (2016). A social interactions model with endogenous friendship formation and selectivity. Journal of Applied Econometrics 31(2), 301–319.
  29. Jackson, M. (2010). Social and Economic Networks. Princeton University Press.
  30. Jackson, M. O. (2021). Inequality’s economic and social roots: The role of social networks and homophily. SSRN Electronic Journal.
  31. Meeting strangers and friends of friends: How random are social networks? American Economic Review 97(3), 890–915.
  32. The evolution of social and economic networks. Journal of Economic Theory 106(2), 265 – 295.
  33. Effect of homophily and correlation of beliefs on COVID-19 and general infectious disease outbreaks. PLOS ONE 16(12).
  34. Li, Q. and J. S. Racine (2006). Nonparametric Econometrics: Theory and Practice. Princeton University Press.
  35. On the asymptotic efficiency of approximate Bayesian computation estimators. Biometrika 105(2), 285–299.
  36. McFadden, D. (1973). Conditional logit analysis of qualitative choice behaviour. In P. Zarembka (Ed.), Frontiers in Econometrics, pp. 105–142. New York, NY, USA: Academic Press New York.
  37. Mele, A. (2017). A structural model of dense network formation. Econometrica 85(3), 825–850.
  38. Large sample estimation and hypothesis testing. In Handbook of Econometrics, Volume 4, Chapter 36, pp.  2111 – 2245. Elsevier.
  39. Newey, W. K. and R. J. Smith (2004). Higher order properties of gmm and generalized empirical likelihood estimators. Econometrica 72(1), 219–255.
  40. Norris, J. R. (1997). Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press.
  41. Pinto, C. C. d. X. and V. P. Ponczek (2020). The building blocks of skill development. Unpublished.
  42. Rothenberg, T. J. (1971). Identification in parametric models. Econometrica 39(3), 577–591.
  43. Sheng, S. (2020). A structural econometric analysis of network formation games through subnetworks. Econometrica 88(5), 1829–1858.
  44. Chapter 12 likelihood-free mcmc. In Handbook of Markov Chain Monte Carlo, pp.  313–338. CRC Press.
  45. Tamer, E. (2003). Incomplete simultaneous discrete response model with multiple equilibria. The Review of Economic Studies 70(1), 147–165.
  46. Vaart, A. W. v. d. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press.
  47. A preference-opportunity-choice framework with applications to intergroup friendship. American Journal of Sociology 114(3), 615–648.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com