Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

OntoDSumm : Ontology based Tweet Summarization for Disaster Events (2201.06545v2)

Published 17 Jan 2022 in cs.SI

Abstract: The huge popularity of social media platforms like Twitter attracts a large fraction of users to share real-time information and short situational messages during disasters. A summary of these tweets is required by the government organizations, agencies, and volunteers for efficient and quick disaster response. However, the huge influx of tweets makes it difficult to manually get a precise overview of ongoing events. To handle this challenge, several tweet summarization approaches have been proposed. In most of the existing literature, tweet summarization is broken into a two-step process where in the first step, it categorizes tweets, and in the second step, it chooses representative tweets from each category. There are both supervised as well as unsupervised approaches found in literature to solve the problem of first step. Supervised approaches requires huge amount of labelled data which incurs cost as well as time. On the other hand, unsupervised approaches could not clusters tweet properly due to the overlapping keywords, vocabulary size, lack of understanding of semantic meaning etc. While, for the second step of summarization, existing approaches applied different ranking methods where those ranking methods are very generic which fail to compute proper importance of a tweet respect to a disaster. Both the problems can be handled far better with proper domain knowledge. In this paper, we exploited already existing domain knowledge by the means of ontology in both the steps and proposed a novel disaster summarization method OntoDSumm. We evaluate this proposed method with 4 state-of-the-art methods using 10 disaster datasets. Evaluation results reveal that OntoDSumm outperforms existing methods by approximately 2-66% in terms of ROUGE-1 F1 score.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Piyush Kumar Garg (7 papers)
  2. Roshni Chakraborty (11 papers)
  3. Sourav Kumar Dandapat (10 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.