Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizing Sensor Leaks in Android Apps (2201.06235v1)

Published 17 Jan 2022 in cs.CR and cs.SE

Abstract: While extremely valuable to achieve advanced functions, mobile phone sensors can be abused by attackers to implement malicious activities in Android apps, as experimentally demonstrated by many state-of-the-art studies. There is hence a strong need to regulate the usage of mobile sensors so as to keep them from being exploited by malicious attackers. However, despite the fact that various efforts have been put in achieving this, i.e., detecting privacy leaks in Android apps, we have not yet found approaches to automatically detect sensor leaks in Android apps. To fill the gap, we designed and implemented a novel prototype tool, SEEKER, that extends the famous FlowDroid tool to detect sensor-based data leaks in Android apps. SEEKER conducts sensor-focused static taint analyses directly on the Android apps' bytecode and reports not only sensor-triggered privacy leaks but also the sensor types involved in the leaks. Experimental results using over 40,000 real-world Android apps show that SEEKER is effective in detecting sensor leaks in Android apps, and malicious apps are more interested in leaking sensor data than benign apps.

Citations (10)

Summary

We haven't generated a summary for this paper yet.