Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explicit and Efficient Constructions of linear Codes Against Adversarial Insertions and Deletions (2201.06130v1)

Published 16 Jan 2022 in cs.IT and math.IT

Abstract: In this work, we study linear error-correcting codes against adversarial insertion-deletion (insdel) errors, a topic that has recently gained a lot of attention. We construct linear codes over $\mathbb{F}q$, for $q=\text{poly}(1/\varepsilon)$, that can efficiently decode from a $\delta$ fraction of insdel errors and have rate $(1-4\delta)/8-\varepsilon$. We also show that by allowing codes over $\mathbb{F}{q2}$ that are linear over $\mathbb{F}_q$, we can improve the rate to $(1-\delta)/4-\varepsilon$ while not sacrificing efficiency. Using this latter result, we construct fully linear codes over $\mathbb{F}_2$ that can efficiently correct up to $\delta < 1/54$ fraction of deletions and have rate $R = (1-54\cdot \delta)/1216$. Cheng, Guruswami, Haeupler, and Li [CGHL21] constructed codes with (extremely small) rates bounded away from zero that can correct up to a $\delta < 1/400$ fraction of insdel errors. They also posed the problem of constructing linear codes that get close to the half-Singleton bound (proved in [CGHL21]) over small fields. Thus, our results significantly improve their construction and get much closer to the bound.

Citations (4)

Summary

We haven't generated a summary for this paper yet.