Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Riemannian polyhedra with non-obtuse dihedral angles in 3-manifolds with positive scalar curvature (2201.06059v3)

Published 16 Jan 2022 in math.DG and math.GT

Abstract: We determine the combinatorial types of all the 3-dimensional simple convex polytopes in R3 that can be realized as mean curvature convex (or totally geodesic) Riemannian polyhedra with non-obtuse dihedral angles in Riemannian 3-manifolds with positive scalar curvature. This result can be considered as an analogue of Andreev's theorem on 3-dimensional hyperbolic polyhedra with non-obtuse dihedral angles. In addition, we construct many examples of such kind of simple convex polytopes in higher dimensions.

Summary

We haven't generated a summary for this paper yet.