Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Parameterized Complexity of s-Club with Triangle and Seed Constraints

Published 14 Jan 2022 in cs.DS | (2201.05654v2)

Abstract: The s-Club problem asks, for a given undirected graph $G$, whether $G$ contains a vertex set $S$ of size at least $k$ such that $G[S]$, the subgraph of $G$ induced by $S$, has diameter at most $s$. We consider variants of $s$-Club where one additionally demands that each vertex of $G[S]$ is contained in at least $\ell$ triangles in $G[S]$, that each edge of $G[S]$ is contained in at least $\ell$~triangles in $G[S]$, or that $S$ contains a given set $W$ of seed vertices. We show that in general these variants are W[1]-hard when parameterized by the solution size $k$, making them significantly harder than the unconstrained $s$-Club problem. On the positive side, we obtain some FPT algorithms for the case when $\ell=1$ and for the case when $G[W]$, the graph induced by the set of seed vertices, is a clique.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.