Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Federated Continual Learning for Socially Aware Robotics (2201.05527v2)

Published 14 Jan 2022 in cs.LG and cs.HC

Abstract: From learning assistance to companionship, social robots promise to enhance many aspects of daily life. However, social robots have not seen widespread adoption, in part because (1) they do not adapt their behavior to new users, and (2) they do not provide sufficient privacy protections. Centralized learning, whereby robots develop skills by gathering data on a server, contributes to these limitations by preventing online learning of new experiences and requiring storage of privacy-sensitive data. In this work, we propose a decentralized learning alternative that improves the privacy and personalization of social robots. We combine two machine learning approaches, Federated Learning and Continual Learning, to capture interaction dynamics distributed physically across robots and temporally across repeated robot encounters. We define a set of criteria that should be balanced in decentralized robot learning scenarios. We also develop a new algorithm -- Elastic Transfer -- that leverages importance-based regularization to preserve relevant parameters across robots and interactions with multiple humans. We show that decentralized learning is a viable alternative to centralized learning in a proof-of-concept Socially-Aware Navigation domain, and demonstrate how Elastic Transfer improves several of the proposed criteria.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. H. Hodson, “The first family robot,” New Scientist, vol. 223, no. 2978, p. 21, 2014.
  2. A. K. Pandey and R. Gelin, “A mass-produced sociable humanoid robot: Pepper: The first machine of its kind,” IEEE Robotics & Automation Magazine, vol. 25, no. 3, pp. 40–48, 2018.
  3. B. Irfan, A. Ramachandran, S. Spaulding, G. I. Parisi, and H. Gunes, “Lifelong learning and personalization in long-term human-robot interaction (LEAP-HRI),” in ACM/IEEE International Conference on Human-Robot Interaction, HRI 2022, Sapporo, Hokkaido, Japan, March 7 - 10, 2022, 2022, pp. 1261–1264.
  4. I. Leite, C. Martinho, and A. Paiva, “Social robots for long-term interaction: a survey,” International Journal of Social Robotics, vol. 5, no. 2, pp. 291–308, 2013.
  5. D. J. Butler, J. Huang, F. Roesner, and M. Cakmak, “The privacy-utility tradeoff for remotely teleoperated robots,” in Proc. of HRI, 2015, pp. 27–34.
  6. J. Yoon, W. Jeong, G. Lee, E. Yang, and S. J. Hwang, “Federated continual learning with weighted inter-client transfer,” in International Conference on Machine Learning.   PMLR, 2021, pp. 12 073–12 086.
  7. N. Shoham, T. Avidor, A. Keren, N. Israel, D. Benditkis, L. Mor-Yosef, and I. Zeitak, “Overcoming forgetting in federated learning on non-iid data,” arXiv preprint arXiv:1910.07796, 2019.
  8. J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska et al., “Overcoming catastrophic forgetting in neural networks,” PNAS, vol. 114, no. 13, pp. 3521–3526, 2017.
  9. G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong learning with neural networks: A review,” Neural Networks, vol. 113, pp. 54–71, 2019.
  10. Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 12, pp. 2935–2947, 2017.
  11. J. Yoon, S. Kim, E. Yang, and S. J. Hwang, “Scalable and order-robust continual learning with additive parameter decomposition,” arXiv preprint arXiv:1902.09432, 2019.
  12. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in AISTATS.   PMLR, 2017, pp. 1273–1282.
  13. T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimization in heterogeneous networks,” arXiv preprint arXiv:1812.06127, 2018.
  14. O. Rudovic, N. Tobis, S. Kaltwang, B. Schuller, D. Rueckert, J. F. Cohn, and R. W. Picard, “Personalized federated deep learning for pain estimation from face images,” 2021.
  15. Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, “Three approaches for personalization with applications to federated learning,” 2020.
  16. A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated learning,” 2021.
  17. W. Huang, M. Ye, and B. Du, “Learn from others and be yourself in heterogeneous federated learning,” in Proc. of CVPR, 2022, pp. 10 143–10 153.
  18. M. F. Criado, F. E. Casado, R. Iglesias, C. V. Regueiro, and S. Barro, “Non-iid data and continual learning processes in federated learning: A long road ahead,” Information Fusion, vol. 88, pp. 263–280, 2022.
  19. G. Wei and X. Li, “Knowledge lock: Overcoming catastrophic forgetting in federated learning,” in in Proc. of PAKDD 2022.   Springer, 2022, pp. 601–612.
  20. Z. Wang, Y. Zhang, X. Xu, Z. Fu, H. Yang, and W. Du, “Federated probability memory recall for federated continual learning,” Information Sciences, 2023.
  21. F. Estévez Casado, D. Lema Pais, M. Fernández Criado, R. Iglesias Rodríguez, C. Vázquez Regueiro, and S. Barro Ameneiro, “Concept drift detection and adaptation for federated and continual learning,” 2021.
  22. Y. Chaudhary, P. Rai, M. Schubert, H. Schütze, and P. Gupta, “Federated continual learning for text classification via selective inter-client transfer,” arXiv preprint arXiv:2210.06101, 2022.
  23. W. Lu, J. Wang, Y. Chen, X. Qin, R. Xu, D. Dimitriadis, and T. Qin, “Personalized federated learning with adaptive batchnorm for healthcare,” IEEE Transactions on Big Data, 2022.
  24. T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Díaz-Rodríguez, “Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges,” Information Fusion, vol. 58, pp. 52–68, 2020.
  25. Y. Xianjia, J. P. Queralta, J. Heikkonen, and T. Westerlund, “Federated learning in robotic and autonomous systems,” arXiv preprint arXiv:2104.10141, 2021.
  26. B. Liu, L. Wang, and M. Liu, “Lifelong federated reinforcement learning: a learning architecture for navigation in cloud robotic systems,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4555–4562, 2019.
  27. A. Logacjov, M. Kerzel, and S. Wermter, “Learning then, learning now, and every second in between: lifelong learning with a simulated humanoid robot,” Frontiers in Neurorobotics, vol. 15, p. 669534, 2021.
  28. N. Churamani, S. Kalkan, and H. Gunes, “Continual learning for affective robotics: Why, what and how?” Age, vol. 30, p. 40, 2020.
  29. J. Tjomsland, S. Kalkan, and H. Gunes, “Mind your manners! A dataset and a continual learning approach for assessing social appropriateness of robot actions,” Frontiers Robotics AI, vol. 9, p. 669420, 2022.
  30. N. Churamani, M. Axelsson, A. Caldır, and H. Gunes, “Continual learning for affective robotics: A proof of concept for wellbeing,” in in Proc. of ACIIW.   IEEE, 2022, pp. 1–8.
  31. L. J. Manso, P. Nuñez, L. V. Calderita, D. R. Faria, and P. Bachiller, “Socnav1: A dataset to benchmark and learn social navigation conventions,” Data, vol. 5, no. 1, p. 7, 2020.
  32. P. Alves-Oliveira, P. Sequeira, F. S. Melo, G. Castellano, and A. Paiva, “Empathic robot for group learning: A field study,” ACM Transactions on Human-Robot Interaction (THRI), vol. 8, no. 1, pp. 1–34, 2019.
  33. O. Rudovic, J. Lee, M. Dai, B. Schuller, and R. W. Picard, “Personalized machine learning for robot perception of affect and engagement in autism therapy,” Science Robotics, vol. 3, no. 19, p. eaao6760, 2018.
  34. D. J. MacKay, “A practical bayesian framework for backpropagation networks,” Neural computation, vol. 4, no. 3, pp. 448–472, 1992.
  35. F. Huszár, “On quadratic penalties in elastic weight consolidation,” arXiv preprint arXiv:1712.03847, 2017.
  36. J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y. W. Teh, R. Pascanu, and R. Hadsell, “Progress & compress: A scalable framework for continual learning,” in International Conference on Machine Learning.   PMLR, 2018, pp. 4528–4537.
  37. J. Rios-Martinez, A. Spalanzani, and C. Laugier, “From proxemics theory to socially-aware navigation: A survey,” International Journal of Social Robotics, vol. 7, no. 2, pp. 137–153, 2015.
  38. D. S. Syrdal, K. L. Koay, M. L. Walters, and K. Dautenhahn, “A personalized robot companion? the role of individual differences on spatial preferences in hri scenarios,” in in Proc. of RO-MAN.   IEEE, 2007, pp. 1143–1148.
  39. L. J. Manso, R. R. Jorvekar, D. R. Faria, P. Bustos, and P. Bachiller, “Graph neural networks for human-aware social navigation,” in Workshop of Physical Agents.   Springer, 2020, pp. 167–179.
  40. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Artificial Intelligence and Statistics.   PMLR, 2017, pp. 1273–1282.
Citations (3)

Summary

We haven't generated a summary for this paper yet.