2000 character limit reached
Convergence of an Asynchronous Block-Coordinate Forward-Backward Algorithm for Convex Composite Optimization (2201.05498v2)
Published 14 Jan 2022 in math.OC and cs.DC
Abstract: In this paper, we study the convergence properties of a randomized block-coordinate descent algorithm for the minimization of a composite convex objective function, where the block-coordinates are updated asynchronously and randomly according to an arbitrary probability distribution. We prove that the iterates generated by the algorithm form a stochastic quasi-Fej\'er sequence and thus converge almost surely to a minimizer of the objective function. Moreover, we prove a general sublinear rate of convergence in expectation for the function values and a linear rate of convergence in expectation under an error bound condition of Tseng type.