Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Multiple Structural Breaks in Systems of Linear Regression Equations with Integrated and Stationary Regressors (2201.05430v4)

Published 14 Jan 2022 in econ.EM

Abstract: In this paper, we propose a two-step procedure based on the group LASSO estimator in combination with a backward elimination algorithm to detect multiple structural breaks in linear regressions with multivariate responses. Applying the two-step estimator, we jointly detect the number and location of structural breaks, and provide consistent estimates of the coefficients. Our framework is flexible enough to allow for a mix of integrated and stationary regressors, as well as deterministic terms. Using simulation experiments, we show that the proposed two-step estimator performs competitively against the likelihood-based approach (Qu and Perron, 2007; Li and Perron, 2017; Oka and Perron, 2018) in finite samples. However, the two-step estimator is computationally much more efficient. An economic application to the identification of structural breaks in the term structure of interest rates illustrates this methodology.

Summary

We haven't generated a summary for this paper yet.