Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Persistent Extension and Analogous Bars: Data-Induced Relations Between Persistence Barcodes (2201.05190v2)

Published 13 Jan 2022 in math.AT and cs.CG

Abstract: A central challenge in topological data analysis is the interpretation of barcodes. The classical algebraic-topological approach to interpreting homology classes is to build maps to spaces whose homology carries semantics we understand and then to appeal to functoriality. However, we often lack such maps in real data; instead, we must rely on a cross-dissimilarity measure between our observations of a system and a reference. In this paper, we develop a pair of computational homological algebra approaches for relating persistent homology classes and barcodes: persistent extension, which enumerates potential relations between cycles from two complexes built on the same vertex set, and the method of analogous bars, which utilizes persistent extension and the witness complex built from a cross-dissimilarity measure to provide relations across systems. We provide an implementation of these methods and demonstrate their use in comparing cycles between two samples from the same metric space and determining whether topology is maintained or destroyed under clustering and dimensionality reduction.

Citations (8)

Summary

We haven't generated a summary for this paper yet.