Papers
Topics
Authors
Recent
Search
2000 character limit reached

Golod-Shafarevich-Vinberg type theorems and finiteness conditions for potential algebras

Published 12 Jan 2022 in math.RA, math-ph, math.AG, math.GR, and math.MP | (2201.04479v1)

Abstract: We obtain a lower estimate for the Hilbert series of Jacobi algebras and their completions by providing analogue of the Golog-Shafarevich-Vinberg theorem for potential case. We especially treat non-homogeneous situation. This estimate allows to answer number of questions arising in the work of Wemyss-Donovan-Brown on noncommutative singularities and deformation theory. In particular, we prove that the only case when a potential algebra or its completion could be finite dimensional or of linear growth, is the case of two variables and potential having terms of degree three.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.