Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GateFormer: Speeding Up News Feed Recommendation with Input Gated Transformers (2201.04406v1)

Published 12 Jan 2022 in cs.IR and cs.AI

Abstract: News feed recommendation is an important web service. In recent years, pre-trained LLMs (PLMs) have been intensively applied to improve the recommendation quality. However, the utilization of these deep models is limited in many aspects, such as lack of explainability and being incompatible with the existing inverted index systems. Above all, the PLMs based recommenders are inefficient, as the encoding of user-side information will take huge computation costs. Although the computation can be accelerated with efficient transformers or distilled PLMs, it is still not enough to make timely recommendations for the active users, who are associated with super long news browsing histories. In this work, we tackle the efficient news recommendation problem from a distinctive perspective. Instead of relying on the entire input (i.e., the collection of news articles a user ever browsed), we argue that the user's interest can be fully captured merely with those representative keywords. Motivated by this, we propose GateFormer, where the input data is gated before feeding into transformers. The gating module is made personalized, lightweight and end-to-end learnable, such that it may perform accurate and efficient filtering of informative user input. GateFormer achieves highly impressive performances in experiments, where it notably outperforms the existing acceleration approaches in both accuracy and efficiency. We also surprisingly find that even with over 10-fold compression of the original input, GateFormer is still able to maintain on-par performances with the SOTA methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Peitian Zhang (23 papers)
  2. Zheng Liu (312 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.