Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A criterion for cofiniteness of modules (2201.04251v1)

Published 12 Jan 2022 in math.AC

Abstract: Let $A$ be a commutative noetherian ring, $\frak a$ be an ideal of $A$, $m,n$ be non-negative integers and let $M$ be an $A$-module such that $\Exti_A(A/\frak a,M)$ is finitely generated for all $i\leq m+n$. We define a class $\cS_n(\frak a)$ of modules and we assume that $H_{\frak a}s(M)\in\cS_{n}(\frak a)$ for all $s\leq m$. We show that $H_{\frak a}s(M)$ is $\frak a$-cofinite for all $s\leq m$ if either $n=1$ or $n\geq 2$ and $\Ext_A{i}(A/\frak a,H_{\frak a}{t+s-i}(M))$ is finitely generated for all $1\leq t\leq n-1$, $i\leq t-1$ and $s\leq m$. If $A$ is a ring of dimension $d$ and $M\in\cS_n(\frak a)$ for any ideal $\frak a$ of dimension $\leq d-1$, then we prove that $M\in\cS_n(\frak a)$ for any ideal $\frak a$ of $A$.

Summary

We haven't generated a summary for this paper yet.