Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating Subset Sum Ratio via Partition Computations (2201.04165v2)

Published 11 Jan 2022 in cs.DS

Abstract: We present a new FPTAS for the Subset Sum Ratio problem, which, given a set of integers, asks for two disjoint subsets such that the ratio of their sums is as close to $1$ as possible. Our scheme makes use of exact and approximate algorithms for the closely related Partition problem, hence any progress over those -- such as the recent improvement due to Bringmann and Nakos [SODA 2021] -- carries over to our FPTAS. Depending on the relationship between the size of the input set $n$ and the error margin $\varepsilon$, we improve upon the best currently known algorithm of Melissinos and Pagourtzis [COCOON 2018] of complexity $O(n4 / \varepsilon)$. In particular, the exponent of $n$ in our proposed scheme may decrease down to $2$, depending on the Partition algorithm used. Furthermore, while the aforementioned state of the art complexity, expressed in the form $O((n + 1 / \varepsilon)c)$, has constant $c = 5$, our results establish that $c < 5$.

Summary

We haven't generated a summary for this paper yet.