Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-rank optimization methods based on projected-projected gradient descent that accumulate at Bouligand stationary points (2201.03962v2)

Published 11 Jan 2022 in math.OC, cs.NA, and math.NA

Abstract: This paper considers the problem of minimizing a differentiable function with locally Lipschitz continuous gradient on the algebraic variety of real matrices of upper-bounded rank. This problem is known to enable the formulation of several machine learning and signal processing tasks such as collaborative filtering and signal recovery. Several definitions of stationarity exist for this nonconvex problem. Among them, Bouligand stationarity is the strongest first-order necessary condition for local optimality. This paper proposes a first-order algorithm that combines the well-known projected-projected gradient descent map with a rank reduction mechanism and generates a sequence in the variety whose accumulation points are Bouligand stationary. This algorithm compares favorably with the three other algorithms known in the literature to enjoy this stationarity property, regarding both the typical computational cost per iteration and empirically observed numerical performance. A framework to design hybrid algorithms enjoying the same property is proposed and illustrated through an example.

Citations (6)

Summary

We haven't generated a summary for this paper yet.