Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Does Interacting Help Users Better Understand the Structure of Probabilistic Models? (2201.03605v2)

Published 10 Jan 2022 in cs.HC

Abstract: Despite growing interest in probabilistic modeling approaches and availability of learning tools, people with no or less statistical background feel hesitant to use them. There is need for tools for communicating probabilistic models to less experienced users more intuitively to help them build, validate, use effectively or trust probabilistic models. Users' comprehension of probabilistic models is vital in these cases and interactive visualizations could enhance it. Although there are various studies evaluating interactivity in Bayesian reasoning and available tools for visualizing the sample-based distributions, we focus specifically on evaluating the effect of interaction on users' comprehension of probabilistic models' structure. We conducted a user study based on our Interactive Pair Plot for visualizing models' distribution and conditioning the sample space graphically. Our results suggest that improvements in the understanding of the interaction group are most pronounced for more exotic structures, such as hierarchical models or unfamiliar parameterizations in comparison to the static group. As the detail of the inferred information increases, interaction does not lead to considerably longer response times. Finally, interaction improves users' confidence.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Evdoxia Taka (3 papers)
  2. Sebastian Stein (21 papers)
  3. John H. Williamson (5 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.