Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum error correction with fractal topological codes (2201.03568v3)

Published 10 Jan 2022 in quant-ph, cond-mat.stat-mech, cond-mat.str-el, and hep-lat

Abstract: Recently, a class of fractal surface codes (FSCs), has been constructed on fractal lattices with Hausdorff dimension $2+\epsilon$, which admits a fault-tolerant non-Clifford CCZ gate. We investigate the performance of such FSCs as fault-tolerant quantum memories. We prove that there exist decoding strategies with non-zero thresholds for bit-flip and phase-flip errors in the FSCs with Hausdorff dimension $2+\epsilon$. For the bit-flip errors, we adapt the sweep decoder, developed for string-like syndromes in the regular 3D surface code, to the FSCs by designing suitable modifications on the boundaries of the holes in the fractal lattice. Our adaptation of the sweep decoder for the FSCs maintains its self-correcting and single-shot nature. For the phase-flip errors, we employ the minimum-weight-perfect-matching (MWPM) decoder for the point-like syndromes. We report a sustainable fault-tolerant threshold ($\sim 1.7\%$) under phenomenological noise for the sweep decoder and the code capacity threshold (lower bounded by $2.95\%$) for the MWPM decoder for a particular FSC with Hausdorff dimension $D_H\approx2.966$. The latter can be mapped to a lower bound of the critical point of a confinement-Higgs transition on the fractal lattice, which is tunable via the Hausdorff dimension.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. “Topological order, quantum codes and quantum computation on fractal geometries” (2021). arXiv:2108.00018.
  2. “Quantum codes on a lattice with boundary” (1998). arXiv:quant-ph/9811052.
  3. Alexei Y. Kitaev. “Fault-tolerant quantum computation by anyons”. Annals of Physics 303, 2–30 (2003).
  4. “Topological quantum memory”. Journal of Mathematical Physics 43, 4452–4505 (2002).
  5. H. Bombin and M. A. Martin-Delgado. “Topological quantum distillation”. Physical Review Letters97 (2006).
  6. “Surface codes: Towards practical large-scale quantum computation”. Physical Review A86 (2012).
  7. “Classification of topologically protected gates for local stabilizer codes”. Physical Review Letters110 (2013).
  8. “Disjointness of stabilizer codes and limitations on fault-tolerant logical gates”. Phys. Rev. X 8, 021047 (2018).
  9. “Universal quantum computation with ideal clifford gates and noisy ancillas”. Phys. Rev. A 71, 022316 (2005).
  10. Daniel Litinski. “A game of surface codes: Large-scale quantum computing with lattice surgery”. Quantum 3, 128 (2019).
  11. “String-net condensation: A physical mechanism for topological phases”. Phys. Rev. B 71, 045110 (2005).
  12. “Quantum computation with turaev–viro codes”. Annals of Physics 325, 2707–2749 (2010).
  13. “Quantum error correction thresholds for the universal fibonacci turaev-viro code”. Phys. Rev. X 12, 021012 (2022).
  14. “Universal logical gates on topologically encoded qubits via constant-depth unitary circuits”. Phys. Rev. Lett. 125, 050502 (2020).
  15. “Universal logical gates with constant overhead: instantaneous dehn twists for hyperbolic quantum codes”. Quantum 3, 180 (2019).
  16. “Instantaneous braids and dehn twists in topologically ordered states”. Phys. Rev. B 102, 075105 (2020).
  17. “Quantum origami: Transversal gates for quantum computation and measurement of topological order”. Phys. Rev. Research 2, 013285 (2020).
  18. “Unfolding the color code”. New Journal of Physics 17, 083026 (2015).
  19. “Three-dimensional surface codes: Transversal gates and fault-tolerant architectures”. Physical Review A 100, 012312 (2019).
  20. Héctor Bombín. “Gauge color codes: optimal transversal gates and gauge fixing in topological stabilizer codes”. New J. Phys. 17, 083002 (2015).
  21. Héctor Bombín. “Single-shot fault-tolerant quantum error correction”. Phys. Rev. X 5, 031043 (2015).
  22. “Cellular-automaton decoders with provable thresholds for topological codes”. Phys. Rev. Lett. 123, 020501 (2019).
  23. “Cellular automaton decoders for topological quantum codes with noisy measurements and beyond” (2020). arXiv:2004.07247.
  24. “Quantum memories at finite temperature”. Rev. Mod. Phys. 88, 045005 (2016).
  25. “Towards practical classical processing for the surface code”. Physical Review Letters108 (2012).
  26. “Quantum memories based on engineered dissipation”. Phys. Rev. A 83, 012304 (2011).
  27. “Fabrication of superconducting through-silicon vias” (2021). arXiv:2103.08536.
  28. “3d integrated superconducting qubits”. npj Quantum Information3 (2017).
  29. “IBM Quantum breaks the 100‑qubit processor barrier” (2021).
  30. “Fusion-based quantum computation” (2021). arXiv:2101.09310.
  31. “Interleaving: Modular architectures for fault-tolerant photonic quantum computing” (2021). arXiv:2103.08612.
  32. “Quantum self-correction in the 3d cubic code model”. Phys. Rev. Lett. 111, 200501 (2013).
  33. “Confinement-higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory”. Annals of Physics 303, 31–58 (2003).
  34. “Error threshold for color codes and random three-body ising models”. Phys. Rev. Lett. 103, 090501 (2009).
  35. Jack Edmonds. “Paths, trees, and flowers”. Canadian Journal of Mathematics 17, 449–467 (1965).
  36. Hector Bombin. “2d quantum computation with 3d topological codes” (2018). arXiv:1810.09571.
  37. Benjamin J. Brown. “A fault-tolerant non-clifford gate for the surface code in two dimensions”. Science Advances6 (2020).
  38. “Single-shot quantum error correction with the three-dimensional subsystem toric code” (2021). arXiv:2106.02621.
  39. H. Bombin. “Gauge color codes: Optimal transversal gates and gauge fixing in topological stabilizer codes” (2015). arXiv:1311.0879.
  40. Michael John George Vasmer. “Fault-tolerant quantum computing with three-dimensional surface codes”. PhD thesis. UCL (University College London).  (2019).
Citations (8)

Summary

We haven't generated a summary for this paper yet.