Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Truncated affine Rozansky--Witten models as extended TQFTs (2201.03284v2)

Published 10 Jan 2022 in math-ph, hep-th, math.MP, and math.QA

Abstract: We construct extended TQFTs associated to Rozansky--Witten models with target manifolds $T*\mathbb{C}n$. The starting point of the construction is the 3-category whose objects are such Rozansky--Witten models, and whose morphisms are defects of all codimensions. By truncation, we obtain a (non-semisimple) 2-category $\mathcal{C}$ of bulk theories, surface defects, and isomorphism classes of line defects. Through a systematic application of the cobordism hypothesis we construct a unique extended oriented 2-dimensional TQFT valued in $\mathcal{C}$ for every affine Rozansky--Witten model. By evaluating this TQFT on closed surfaces we obtain the infinite-dimensional state spaces (graded by flavour and R-charges) of the initial 3-dimensional theory. Furthermore, we explicitly compute the commutative Frobenius algebras that classify the restrictions of the extended theories to circles and bordisms between them.

Summary

We haven't generated a summary for this paper yet.